Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210102
Polímeros: Ciência e Tecnologia
Original Article

Physical-mechanical behavior of nitrile rubber-synthetic mica nanocomposites

Janis Schutte Nunes; Edson Noriyuki Ito; Cléverson Fernandes Senra Gabriel; Thiago Castro Lopes; Regina Célia Reis Nunes

Downloads: 1
Views: 376

Abstract

Nitrile rubber (NBR) nanocomposites with different contents of synthetic Somasif ME-100 mica (sodium-fluorohectorite) were obtained by melt compounding using a Semi Efficient curing system. The effect of curing on the nanocomposties was evaluated through rheometric properties, crosslink density (CLD) and mechanical properties. The ME-100 mica dispersion in NBR was assessed by transmission electron microscopy (TEM), the Payne effect and thermodynamic properties (ΔS and ΔG). Both the curing parameters and CLD pointd out that the addition of ME-100 directly affects crosslinks formation. It could also be observed that the nanofiller dispersion state is complex, exhibiting exfoliated and agglomerated structures (TEM); besides, agglomerations rose linearly as the nanofiller was added (the Payne effect). Notwithstanding these findings, and on the basis of unfilled formulations, NBR20 nanocomposite showed improvement in mechanical properties (tensile and tear strengths) which suggests that ME-100 might be considered a semi-reinforcing filler.

 

 

Keywords

crosslink density, fluoromica, mechanical properties, nitrile rubber, synthetic mica

References

1 Palaty, S., & Joseph, R. (2006). Low temperature curing of NBR for property improvement. Journal of Elastomers and Plastics, 38(3), 199-209. http://dx.doi.org/10.1177/0095244306063479.

2 Schuster, H. R. (2019). Dispersión de cargas y reforzamiento: ciencia y aplicación. Buenos Aires: Sociedad Latinoamericana de Tecnologia del Caucho - SLTC.

3 Sisanth, K. S., Thomas, M. G., Abraham, J., & Thomas, S. (2017). General introduction to rubber compounding. In S. Thomas & H. J. Maria (Eds.), Progress in rubber nanocomposites (pp. 1-39). United Kingdom: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-100409-8.00001-2.

4 Sousa, A. M. F., Peres, A. C. C., Furtado, C. R. G., & Visconte, L. L. Y. (2017). Mixing process influence on thermal and rheological properties of NBR/SiO2 from rice husk ash. Polímeros: Ciência e Tecnologia, 27(2), 93-99. http://dx.doi.org/10.1590/0104-1428.1959.

5 Morrill, J. P. (1968). Nitrile Elastomers. In G. G. Winspear (Ed.), The vanderbilt rubber handbook (pp. 169-188). USA: R. T. Vanderbilt Company, Inc.

6 Galimberti, M., Cipolletti, V., Musto, S., Cioppa, S., Peli, G., Mauro, M., Gaetano, G., Agnelli, S., Theonis, R., & Kumar, V. (2014). Recent advancements in rubber nanocomposites. Rubber Chemistry and Technology, 87(3), 417-442. http://dx.doi.org/10.5254/rct.14.86919.

7 Das, A., Wang, D.-Y., Stockelhuber, K. W., Jurk, R., Fritzsche, J., Klüppel, M., & Heinrich, G. (2011). Rubber–clay nanocomposites: some recent results. In G. Heinrich (Ed.), Advanced polymer science (pp. 85-166) Germany: Springer Berlin Heidelberg.

8 Kumar, V., & Lee, D.-J. (2016). Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber. Journal of Applied Polymer Science, 134(4), 44407.

9 Monfared, A., & Jalali-Arani, A. (2015). Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: the effect of nanoparticle localization. Applied Clay Science, 108, 1-11. http://dx.doi.org/10.1016/j.clay.2015.02.012.

10 Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008.

11 Wang, Y.-Q., Wu, Y.-P., Zhang, H.-F., Zhao, W., Wang, C.-X., & Zhang, L.-Q. (2005). Preparation, structure, and properties of a Novel Rectorite/Nitrile Butadiene Rubber (NBR) nanocomposites. Polymer Journal, 37(3), 154-161. http://dx.doi.org/10.1295/polymj.37.154.

12 Carrado, K. A. (2000). Synthetic organo- and polymer–clays: preparation, characterization, and materials applications. Applied Clay Science, 17(1-2), 1-23. http://dx.doi.org/10.1016/S0169-1317(00)00005-3.

13 Gabriel, C. F. S. (2018). Desenvolvimento e caracterização de composições de NBR em fardo e em látex com mica Somasif ME100TM (Dissertação de mestrado). Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

14 Gatos, K. G., Thomann, R., & Karger-Kocsis, J. (2004). Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polymer International, 53(8), 1191-1197. http://dx.doi.org/10.1002/pi.1556.

15 Honorato, L., Dias, M. L., Azuma, C., & Nunes, R. C. R. (2016). Rheological properties and curing features of natural rubber compositions filled with fluoromica ME 100. Polímeros: Ciência e Tecnologia, 26(3), 249-253. http://dx.doi.org/10.1590/0104-1428.2352.

16 Linhares, F. N., Gabriel, C. F. S., Sousa, A. M. F., & Nunes, R. C. R. (2018). Mechanical and rheological properties of nitrile rubber/fluoromica composites. Applied Clay Science, 162, 165-174. http://dx.doi.org/10.1016/j.clay.2018.06.004.

17 Psarras, G. C., Gatos, K. G., Karahaliou, P. K., Georga, S. N., Krontiras, C. A., & Karger-Kocsis, J. (2007). Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polymer Letters, 1(12), 837-845. http://dx.doi.org/10.3144/expresspolymlett.2007.116.

18 Varghese, S., & Karger-Kocsis, J. (2003). Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer, 44(17), 4921-4927. http://dx.doi.org/10.1016/S0032-3861(03)00480-4.

19 Varghese, S., Karger-Kocsis, J., & Gatos, K. G. (2003). Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships. Polymer, 44(14), 3977-3983. http://dx.doi.org/10.1016/S0032-3861(03)00358-6.

20 Varghese, S., Gatos, K. G., Apostolov, A. A., & Karger-Kocsis, J. (2004). Morphology and mechanical properties of layered silicate reinforced natural and polyurethane rubber blends produced by latex compounding. Journal of Applied Polymer Science, 92(1), 543-551. http://dx.doi.org/10.1002/app.20036.

21 Tateyama, H., Tsunematsu, K., Kimura, K., Hirosue, H., Jinnai, K., & Furusawa, T. (2010). US 5204078A. Retrieved in 2021, December 2, from https://patentimages.storage.googleapis.com/93/21/18/e0caa019ef57dd/US5204078.pdf

22 Gelfer, M. Y., Burger, C., Nawani, P., Hsiao, B. S., Chu, B., Si, M., Rafailovich, M., Panek, G., Jeschke, G., Fadeev, A. Y., & Gilman, J. W. (2007). Lamellar nanostructure in “Somasif”-based organoclays. Clays and Clay Minerals, 55(2), 140-150. http://dx.doi.org/10.1346/CCMN.2007.0550203.

23 Klabunde, S., Doerenkamp, C., Oliveira, M., Zeng, Z., & Eckert, H. (2021). Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4, 4, 5, 5-tetramethyl-4, 5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay. Zeitschrift für Physikalische Chemie, 236(6-8), 961-978. http://dx.doi.org/10.1515/zpch-2021-3133.

24 Sugiura, M., Sueyoshi, M., Seike, R., Hayashi, T., & Okada, T. (2020). Hydrated silicate layer formation on mica-type crystals. Langmuir, 36(18), 4933-4941. http://dx.doi.org/10.1021/acs.langmuir.0c00358. PMid:32330044.

25 Alosime, E. M., Edwards, G. A., & Martin, D. J. (2015). Structure-property relationships in copolyester elastomer-layered silicate nanocomposites. Journal of Applied Polymer Science, 132(13), 41742. http://dx.doi.org/10.1002/app.41742.

26 Balcerzak, M., Pietralik, Z., Domka, L., Skrzypczak, A., & Kozak, M. (2015). Adsorption of dimeric surfactants in lamellar silicates. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 364, 108-115. http://dx.doi.org/10.1016/j.nimb.2015.07.135.

27 Fukushima, Y., Yamada, T., Tamura, K., & Shibata, K. (2018). Dynamic of organic species in organo-clay/polypropyrene composite by quesi-elastic neutron scattering. Applied Clay Science, 155, 15-19. http://dx.doi.org/10.1016/j.clay.2017.12.041.

28 Huth, M., Chen, C.-W., & Wagner, V. (2018). Measurement of Hansen solubility parameters for organophilic fluoromica and evaluation of potential solvents for exfoliation. Applied Clay Science, 155, 120-125. http://dx.doi.org/10.1016/j.clay.2018.01.012.

29 Huth, M., Chen, C.-W., Köhling, J., & Wagner, V. (2018). Influence of Hansen solubility parameters on exfoliation of organophilic fluoromica. Applied Clay Science, 161, 412-418. http://dx.doi.org/10.1016/j.clay.2018.04.036.

30 Kiersnowski, A., Chrissopoulou, K., Selter, P., Chlebosz, D., Hou, B., Lieberwirth, I., Honkimäki, V., Mezger, M., Anastasiadis, S. H., & Hansen, M. R. (2018). Formation of oriented polar crystals in bulk poly (vinylidene fluoride)/high-aspect-ratio organoclay nanocomposites. Langmuir, 34(44), 13375-13386. http://dx.doi.org/10.1021/acs.langmuir.8b02412. PMid:30350703.

31 Leone, G., Giovanella, U., Galeotti, F., Barba, L., Arrighetti, G., Scavia, G., Rapallo, A., & Porzio, W. (2016). Conjugated dye-intercalated fluoromica hybrids displaying tunability of optical properties through packing variation. Dyes and Pigments, 124, 53-62. http://dx.doi.org/10.1016/j.dyepig.2015.09.003.

32 Mohamadi, M., Garmabi, H., & Keshavarzi, F. (2016). An investigation of the effects of organomodified-fluoromica on mechanical and barrier properties of compatibilized high density polyethylene nanocomposite films. Journal of Plastic Film & Sheeting, 32(1), 10-33. http://dx.doi.org/10.1177/8756087915569097.

33 Tee, N., Zhu, Y., Mortimer, G. M., Martin, D. J., & Minchin, R. F. (2015). Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake. International Journal of Nanomedicine, 10(1), 2363-2375. PMid:25848256.

34 Zhu, Y., Edwards, G. A., & Martin, D. J. (2015). Reduction of aspect ratio of fluoromica using high-energy milling. Applied Clay Science, 114, 315-320. http://dx.doi.org/10.1016/j.clay.2015.06.020.

35 Dick, J. S., & Pawlowski, H. (1996). Applications for the curemeter maximum cure rate in rubber compound development process control and cure kinetic studies. Polymer Testing, 15(3), 207-243. http://dx.doi.org/10.1016/0142-9418(95)00033-X.

36 Payne, A. R. (1962). The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. Journal of Applied Polymer Science, 6(19), 57-63. http://dx.doi.org/10.1002/app.1962.070061906.

37 Payne, A. R. (1962). The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. Journal of Applied Polymer Science, 6(21), 368-372. http://dx.doi.org/10.1002/app.1962.070062115.

38 Niedermeier, W., Fröhlich, J., & Luginsland, H. D. (2002). Reinforcement mechanism in the rubber matrix by active fillers. Kautschuk und Gummi, Kunststoffe, 55(7-8), 356-366.

39 Payne, A. R. (1963). Dynamic properties of heat-treated butyl vulcanizates. Journal of Applied Polymer Science, 7(3), 873-885. http://dx.doi.org/10.1002/app.1963.070070307.

40 Payne, A. R., & Whittaker, R. E. (1971). Low strain dynamic properties of filled rubbers. Rubber Chemistry and Technology, 44(2), 440-478. http://dx.doi.org/10.5254/1.3547375.

41 Chattaraj, P. P., Mukhopadhyay, R., & Tripathy, D. K. (1997). Effect of trans-polyoctenylene on crosslink structure of NBR and SBR using solid state 13C NMR Spectroscopy and RPA 2000. Rubber Chemistry and Technology, 70(1), 90-105. http://dx.doi.org/10.5254/1.3538421.

42 Lee, S., Pawlowski, H., & Coran, A. Y. (1994). Method for estimating the chemical crosslink densities of cured natural rubber and styrene-butadiene rubber. Rubber Chemistry and Technology, 67(5), 854-864. http://dx.doi.org/10.5254/1.3538716.

43 Pechurai, W., Sahakaro, K., & Nakason, C. (2009). Influence of phenolic curative on crosslink density and other related properties of dynamically cured NBR/HDPE blends. Journal of Applied Polymer Science, 113(2), 1232-1240. http://dx.doi.org/10.1002/app.30036.

44 Lapa, V. L. C., Oliveira, P. D., Visconte, L. L. Y., & Nunes, R. C. R. (2008). Investigation of NBR-cellulose II nanocomposites by rheometric and equilibrium swelling properties. Polymer Bulletin, 60(2), 281-290. http://dx.doi.org/10.1007/s00289-007-0848-8.

45 Flory, P. J. (1953). Principles of polymer chemistry. USA: Cornell University Press.

46 Flory, P. J., & Rehner, J., Jr (1943). Statistical mechanics of crosslinked polymer networks I. Rubberlike elasticity. The Journal of Chemical Physics, 11(11), 512-520. http://dx.doi.org/10.1063/1.1723791.

47 Hwang, W.-G., Wei, K.-H., & Wu, C.-M. (2005). Synergistic effect of compatibilizer in organo-modified layered silicate reinforced butadiene rubber nanocomposites. Polymer Engineering and Science, 46(1), 80-88. http://dx.doi.org/10.1002/pen.20450.

48 López-Manchado, M. A., Herrero, B., & Arroyo, M. (2003). Preparation and characterization of organoclay nanocomposites based on natural rubber. Polymer International, 52(7), 1070-1077. http://dx.doi.org/10.1002/pi.1161.

49 Mousa, A., & Karger-Kocsis, J. (2001). Rheological and thermodynamical behavior of styrene/butadiene rubber-organoclay nanocomposites. Macromolecular Materials and Engineering, 286(4), 260-266. http://dx.doi.org/10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X.

50 Pojanavaraphan, T., Schiraldi, D. A., & Magaraphan, R. (2010). Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freeze-drying. Applied Clay Science, 50(2), 271-279. http://dx.doi.org/10.1016/j.clay.2010.08.020.

51 Ghari, H. S., & Jalali-Arani, A. (2016). Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: study on the structure, cure behavior, static and dynamic-mechanical properties. Applied Clay Science, 119(Part 2), 348-357. http://dx.doi.org/10.1016/j.clay.2015.11.001.

52 Tager, A. (1953). Physical chemistry of polymers. New York: Cornell University Press.

53 Kader, M. A., & Nah, C. (2004). Influence of clay on the vulcanization kinetics of fluoroelastomer nanocomposites. Polymer, 45(7), 2237-2247. http://dx.doi.org/10.1016/j.polymer.2004.01.052.

54 Zhao, F., Shi, X., Chen, X., & Zhao, S. (2010). Interaction of vulcanization and reinforcement of CB on dynamic property of NBR characterized by RPA2000. Journal of Applied Polymer Science, 117(2), 1168-1172. http://dx.doi.org/10.1002/app.31918.

55 Cattaneo, A. S., Bracco, S., Comotti, A., Galimberti, M., Sozzani, P., & Eckert, H. (2011). Structural characterization of pristine and modified fluoromica using multinuclear solid-state NMR. The Journal of Physical Chemistry C, 115(25), 12517-12529. http://dx.doi.org/10.1021/jp2020676.

56 Khederlou, K., Bagheri, R., & Shojaei, A. (2014). A mathematical method for XRD pattern interpretation in clay containing nano composites. Applied Surface Science, 318, 90-94. http://dx.doi.org/10.1016/j.apsusc.2014.01.044.
 

635843e1a953951df1522b33 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections