Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210099
Polímeros: Ciência e Tecnologia
Original Article

Determination leaching of boron from Oriental beech wood coated with polyurethane/polyurea (PUU) hybrid and epoxy (EPR) resins

Çaglar Altay; Hilmi Toker; Mustafa Kucuktuvek; Mehmet Yeniocak; İlknur Babahan Bircan; Ergun Baysal

Downloads: 2
Views: 681

Abstract

In this study, the leaching performance of boron compounds from Oriental beech (Fagus orientalis L.) wood coated with polyurethane/polyurea (PUU) hybrid resin and epoxy resin (EPR) was investigated. Leaching of boron test and SEM (Scanning Electron Microscopy) analyzes were applied to the prepared test specimens. According to the leaching of boron test results, specimens coated with polyurethane/polyurea (PUU) hybrid resin gave the most positive result against boron leaching. It was found that boric acid (BA) impregnated and epoxy resin (EPR) coated Oriental beech wood showed a smoother surface than other treatment groups.

 

 

Keywords

boron compounds, epoxy resin, leaching of boron, Oriental beech, polyurethane/polyurea hybrid resin

References

1 Esen, R. (2009). Determination of the effects on combustion strength of surface treatments applied on impregnated wood (Master’s thesis). Karabük University Graduate School of Natural and Applied Science, Turkey.

2 Qu, H., Wu, W., Wu, H., Xie, J., & Xu, J. (2011). Study on the effects of flame retardants on the thermal decomposition of wood by TG–MS. Journal of Thermal Analysis and Calorimetry, 103(3), 935-942. http://dx.doi.org/10.1007/s10973-010-1103-3.

3 Temiz, A., Gezer, E. D., Yildiz, U. C., & Yildiz, S. (2008). Combustion properties of alder (Alnus glutinosa L.) Gaertn. Subsp Barbata (CA Mey) Yalt.) and Southern pine (Pinus sylvestris L.) wood treated with boron compounds. Construction & Building Materials, 22(11), 2165-2169. http://dx.doi.org/10.1016/j.conbuildmat.2007.08.011.

4 Medeiros, F. C. M., Gouveia, F. N., Bizzo, H. R., Vieira, R. F., & Del Menezzi, C. H. S. (2016). Fungicidal activity of essential oils from Brazilian Cerrado species against wood decay fungi. International Biodeterioration & Biodegradation, 114, 87-93. http://dx.doi.org/10.1016/j.ibiod.2016.06.003.

5 Feng, J., Chen, J., Chen, M., Su, X., & Shi, Q. (2017). Effects of biocide treatments on durability of wood and bamboo/high density polyethylene composites against algal and fungal decay. Journal of Applied Polymer Science, 134(31), 45148. http://dx.doi.org/10.1002/app.45148.

6 Li, Y., Dong, X., Liu, Y., Li, J., & Wang, F. (2011). Improvement of decay resistance of wood via combination treatment on wood cell wall: swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. International Biodeterioration & Biodegradation, 65(7), 1087-1094. http://dx.doi.org/10.1016/j.ibiod.2011.08.009.

7 Humar, M., & Lesar, B. (2013). Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake. International Biodeterioration & Biodegradation, 85, 223-227. http://dx.doi.org/10.1016/j.ibiod.2013.07.011.

8 Salem, M. Z. M., Zidan, Y. E., Mansour, M. M. A., El Hadidi, N. M. N., & Abo Elgat, W. A. A. (2016). Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. International Biodeterioration & Biodegradation, 106, 88-96. http://dx.doi.org/10.1016/j.ibiod.2015.10.010.

9 Bardage, S., Westin, M., Fogarty, H. A., & Trey, S. (2014). The effect of natural product treatment of southern yellow pine on fungi causing blue stain and mold. International Biodeterioration & Biodegradation, 86, 54-59. http://dx.doi.org/10.1016/j.ibiod.2013.09.001.

10 Reinprecht, L. (2016). Wood deterioration, protection and maintenance. London: John Wiley & Sons. http://dx.doi.org/10.1002/9781119106500.

11 Lourenço, P. B. (2006). Recommendations for restoration of ancient buildings and the survival of a masonry chimney. Construction & Building Materials, 20(4), 239-251. http://dx.doi.org/10.1016/j.conbuildmat.2005.08.026.

12 Eaton, R. A., & Hale, M. D. C. (1993). Wood: decay, pests and protection. London: Chapman & Hall.

13 Green, F., & Schultz, T. P. (2003). New environmentally-benign concepts in wood protection: the combination of organic biocides and non-biocidal additives. In 221st National Meeting of the American Chemical Society (pp. 378-389). Washington, DC: American Chemical Society. http://dx.doi.org/10.1021/bk-2003-0845.ch023.

14 Barnes, H. M. (2002). Wood preservation. In D. Pimentel (Ed.), Encyclopedia of pest management (pp. 719-721). New York: Marcel Dekker.

15 European Union. Directiva 2003/2/CE. (2003). Official Journal of European Communities, Brussels.

16 Environmental Protection Agency – EPA. (2002). Notice of receipt of requests to cancel certain Chromated Copper Arsenate (CCA) wood preservative products and amend to terminate certain uses of CCA products. USA: EPA.

17 Sen, S., Fidan, M. S., Alkan, E., & Yasar, S. S. (2018). Determination Of Some Properties Of Scotch Pine (Pinus Sylvestris L.) Wood Which Is Impregnated With Boron Compounds and Quechua. Wood Research, 63(6), 1033-1044. Retrieved in 2022, January 7, from http://www.woodresearch.sk/cms/determination-of-some-properties-of-scotch-pine-pinus-sylvestris-l-wood-which-is-impregnated-with-boron-compounds-and-quechua/

18 Tomak, E. D., Hughes, M., Yıldız, U. C., & Viitanen, H. (2011). The combined effects of boron and oil heat treatment on beech and Scots pine wood properties. Part 1: boron leaching, thermogravimetric analysis, and chemical composition. Journal of Materials Science, 46(3), 598-607. http://dx.doi.org/10.1007/s10853-010-4859-8.

19 Lesar, B., Kralj, P., & Humar, M. (2009). Montan wax improves performance of boron-based wood preservatives. International Biodeterioration & Biodegradation, 63(3), 306-310. http://dx.doi.org/10.1016/j.ibiod.2008.10.006.

20 Lloyd, J. D., Dickinson, D. J., & Murphy, R. J. (1990). The probable mechanism of action of boric acid and borates as wood preservatives. In 21st Annual Metting the International Research Group on Wood Preservation. Stockholm: International Research Group on Wood Protection.

21 Yalinkilic, M. K. (2000). Improvement of boron immobility in the borate treated wood and composite materials (Doctoral dissertation). Kyoto University, Japan.

22 Baysal, E., & Yalinkilic, M. K. (2005). A new boron impregnation technique of wood by vapor boron of boric acid to reduce leaching boron from wood. Wood Science and Technology, 39(3), 187-198. http://dx.doi.org/10.1007/s00226-005-0289-1.

23 Baysal, E., Sonmez, A., Colak, M., & Toker, H. (2006). Amount of leachant and water absorption levels of wood treated with borates and water repellents. Bioresource Technology, 97(18), 2271-2279. http://dx.doi.org/10.1016/j.biortech.2005.10.044. PMid:16359861.

24 Bekhta, P., & Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57(5), 539-546. http://dx.doi.org/10.1515/HF.2003.080.

25 American Society for Testing and Materials – ASTM. (2007). ASTM-D 1413-07: standard test method for wood preservatives by laboratory soil-block cultures. West Conshohocken: ASTM International. http://dx.doi.org/10.1520/D1413-07.

26 Abed, M. S., Ahmed, P. S., Oleiwi, J. K., & Fadhil, B. M. (2020). Low velocity impact of Kevlar and ultra high molecular weight polyethylene (UHMWPE) reinforced epoxy composites. Multidiscipline Modeling in Materials and Structures, 16(6), 1617-1630. http://dx.doi.org/10.1108/MMMS-09-2019-0164.

27 Babahan, I., Zheng, Y., & Soucek, M. D. (2020). New bio based glycidal epoxides. Progress in Organic Coatings, 142, 105580. http://dx.doi.org/10.1016/j.porgcoat.2020.105580.

28 Altay, Ç., Toker, H., Baysal, E., & Babahan, İ. (2022). Some surface characteristics of Oriental beech wood impregnated with some fire-retardants and coated with polyurea/polyurethane hybrid and epoxy resins. Maderas. Ciencia y Tecnología, 24(7), 1-12. http://dx.doi.org/10.4067/s0718-221x2022000100407.

29 Attard, T. L., He, L., & Zhou, H. (2019). Improving damping property of carbon-fiber reinforced epoxy composite, through novel hybrid epoxy-polyurea interfacial reaction. Composites. Part B, Engineering, 164, 720-731. http://dx.doi.org/10.1016/j.compositesb.2019.01.064.

30 Yeniocak, M., & Kahveci, S. (2018). Investigation leaching performance of wood materials coated with Cotinus coggygria extracts and liquid glass (SiO2) mixture. Wood Research, 63(5), 843-854. Retrieved in 2022, January 7, from http://www.woodresearch.sk/cms/investigation-leaching-performance-of-wood-materials-coated-with-cotinus-coggygria-extracts-and-liquid-glass-sio2-mixture/

31 Cai, S., Jebrane, M., Terziev, N., & Daniel, G. (2016). Mechanical properties and decay resistance of Scots Pine (Pinus sylvestris L.) sapwood modified by vinyl acetate-epoxidized linseed oil copolymer. Holzforschung, 70(9), 885-894. http://dx.doi.org/10.1515/hf-2015-0248.
 

62c5e58ea9539533eb2501f4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections