Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210097
Polímeros: Ciência e Tecnologia
Original Article

Development and characterization of green polyethylene/clay/antimicrobial additive nanocompositesa

Priscylla Jordânia Pereira de Mesquita; Tatianny Soares Alves; Renata Barbosa

Downloads: 0
Views: 644

Abstract

In this work, nanocomposites were developed and evaluated using high-density bio polyethylene (BPEAD)/Cloisite 20A (3 and 6%)/commercial antimicrobial additive (0,5 and 1%) containing 1% of zinc pyrithione dispersed in vinyl acetate (EVA). The samples were prepared in a single screw extruder using the melt intercalation technique and then by flat extrusion to obtain the films. X-ray diffraction (XRD) showed an increase in basal spacing and exfoliation of the structure of some films. The Fourier Transform Infrared Spectroscopy (FTIR) analysis illustrated the main functional groups for BHDPE and EVA. Thermal analysis indicated that BHDPE degradation did not change with organoclay addition, but crystallinity increased. The mechanical properties showed an increase in the elastic modulus and a decrease in maximum tensile strength. This work contributes to the development and improvement of the natural properties of BHDPE in order to enlarge its applications.

 

 

Keywords

bio polyethylene, clay, flat films, nanocomposites

References

1 Mehta, N., Cunningham, E., Roy, D., Cathcart, A., Dempster, M., Berry, E., & Smyth, B. M. (2021). Exploring perceptions of environmental professionals, plastic processors, students and consumers of bio-based plastics: informing the development of the sector. Sustainable Production and Consumption, 26, 574-587. http://dx.doi.org/10.1016/j.spc.2020.12.015.

2 Mazur, K., Jakubowska, P., Romanska, P., & Kuciel, S. (2020). Green high-density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. Composites. Part B, Engineering, 202, 108399. http://dx.doi.org/10.1016/j.compositesb.2020.108399.

3 Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. http://dx.doi.org/10.1351/PAC-REC-10-12-04.

4 Brodin, M., Vallejos, M., Opedal, M. T., Area, M. C., & Chinga-Carrasco, G. (2017). Lignocellulosics as sustainable resources for production of bioplastics – a review. Journal of Cleaner Production, 162, 646-664. http://dx.doi.org/10.1016/j.jclepro.2017.05.209.

5 Dilkes-Hoffman, L., Ashworth, P., Laycock, B., Pratt, S., & Lant, P. (2019). Public attitudes towards bioplastics – knowledge, perception and end-of-life management. Resources, Conservation and Recycling, 151, 104479. http://dx.doi.org/10.1016/j.resconrec.2019.104479.

6 Nagakawa, Y., Yunoki, S., & Saito, M. (2014). Liquid scintillation counting of solid-state plastic pellets to distinguish bio-based polyethylene. Polymer Testing, 33, 13-15. http://dx.doi.org/10.1016/j.polymertesting.2013.10.018.

7 Santos, L. A. Jr., Thiré, R. M. S. M., Lima, E. M. B., Racca, L. M., & Silva, A. L. N. (2018). Mechanical and thermal properties of environment friendly composite based on mango’s seed shell and high-density polyethylene. Macromolecular Symposia, 381(1), 1800125. http://dx.doi.org/10.1002/masy.201800125.

8 Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials. Progress in Polymer Science, 36(9), 1254-1276. http://dx.doi.org/10.1016/j.progpolymsci.2011.05.003.

9 Chen, L., Rende, D., Schadler, L. S., & Ozisik, R. (2013). Polymer nanocomposite foams. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(12), 3837-3850. http://dx.doi.org/10.1039/c2ta00086e.

10 Seraji, S. M., Aghjeh, M. K. R., Davari, M., Hosseini, M. S., & Khelgati, S. (2011). Effect of clay dispersion on the cell structure of LDPE/clay nanocomposite foams. Polymer Composites, 32(7), 1095-1105. http://dx.doi.org/10.1002/pc.21127.

11 Anadao, P. (2014). The use of montmorillonite clay in polymer nanocomposite foams. In V. Mittal (Ed.), Polymer nanocomposite foams (pp. 149-168). Boca Raton: CRC Press.

12 Cui, Y., Kumar, S., Kona, B. R., & van Houcke, D. (2015). Gas barrier properties of polymer/clay nanocomposites. RSC Advances, 5(78), 63669-63690. http://dx.doi.org/10.1039/C5RA10333A.

13 Azeredo, H. M. C. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253. http://dx.doi.org/10.1016/j.foodres.2009.03.019.

14 Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204. http://dx.doi.org/10.1016/j.polymer.2008.04.017.

15 Majeed, K., Jawaid, M., Hassan, A., Bakar, A. A., Khalil, H. P. S. A., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391-410. http://dx.doi.org/10.1016/j.matdes.2012.10.044.

16 Laguna-Gutierrez, E., Escudero, J., & Rodriguez-Perez, M. A. (2018). Analysis of the mechanical properties and effective diffusion coeficiente under static creep loading of low-density foams based on polyethylene/clays nanocomposites. Composites. Part B, Engineering, 148, 156-165. http://dx.doi.org/10.1016/j.compositesb.2018.04.057.

17 Huitric, J., Ville, J., Mederic, P., & Aubry, T. (2017). Solid-state morphology, structure, and tensile properties of polyethylene/polyamide/nanoclay blends: effect of clay fraction. Polymer Testing, 58, 96-103. http://dx.doi.org/10.1016/j.polymertesting.2016.12.020.

18 Liang, G., Xu, J., Bao, S., & Xu, W. (2004). Polyethylene/maleic anhydride grafted polyethylene/organic-montmorillonite nanocomposites. I. Preparation, microstructure, and mechanical properties. Journal of Applied Polymer Science, 91(6), 3974-3980. http://dx.doi.org/10.1002/app.13612.

19 Siedenbiedel, F., & Tiller, J. C. (2012). Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers, 4(1), 46-71. http://dx.doi.org/10.3390/polym4010046.

20 Galli, R., Hall, M. C., Breitenbach, E. R., Colpani, G. L., Zanetti, M., Mello, J. M. M., Silva, L. L., & Fiori, M. A. (2020). Antibacterial polyethylene - ethylene vinyl acetate polymeric blend by incorporation of zinc oxide nanoparticles. Polymer Testing, 89, 106554. http://dx.doi.org/10.1016/j.polymertesting.2020.106554.

21 Vilas, C., Mauricio-Iglesias, M., & García, M. (2020). Model-based design of smart active packaging systems with antimicrobial activity. Food Packaging and Shelf Life, 24, 100446. http://dx.doi.org/10.1016/j.fpsl.2019.100446.

22 Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green based antimicrobial packaging materials: a mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. http://dx.doi.org/10.1016/j.aiepr.2019.11.002.

23 Rojas, K., Canales, D., Amigo, N., Montoille, L., Cament, A., Rivas, L. M., Gil-Castell, O., Reyes, P., Ulloa, M. T., Ribes-Greus, A., & Zapata, P. A. (2019). Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Composites. Part B, Engineering, 172, 173-178. http://dx.doi.org/10.1016/j.compositesb.2019.05.054.

24 Li, S.-C., & Li, Y.-N. (2010). Mechanical and antibacterial properties of modified nano-ZnO/high density polyethylene composite films with a low doped content of nano-ZnO. Journal of Applied Polymer Science, 116(5), 2965-2969. http://dx.doi.org/10.1002/app.31802.

25 Das-Gupta, D. K. (1994). Polyethylene: structure, morphology, molecular motion and dieletric behavior. IEEE Electrical Insulation Magazine, 10(3), 5-15. http://dx.doi.org/10.1109/57.285418.

26 Paiva, L. B., Morales, A. R., & Días, F. R. V. (2008). Organoclays: properties, preparation and applications. Applied Clay Science, 42(1-2), 8-24. http://dx.doi.org/10.1016/j.clay.2008.02.006.

27 Roy, A., Joshi, M., & Butola, B. S. (2019). Preparation and antimicrobial assessment of zinc-montmorillonite intercalates based HDPE nanocomposites: a cost-effective and safe bioactive plastic. Journal of Cleaner Production, 212, 1518-1525. http://dx.doi.org/10.1016/j.jclepro.2018.11.235.

28 Coleman, M. M., Moskala, E. J., Painter, P. C., Walsh, D. J., & Rostami, S. (1983). A Fourier transform infra-red study of the phase behaviour of polymer blends. Ethylene-vinyl acetate copolymer blends with poly(vinyl chloride) and chlorinated polyethylene. Polymer, 24(11), 1410-1414. http://dx.doi.org/10.1016/0032-3861(83)90221-5.

29 Gulmine, J. V., Janissek, P. R., Heise, H. M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer Testing, 21(5), 557-563. http://dx.doi.org/10.1016/S0142-9418(01)00124-6.

30 Holešová, S., Samlíková, M., Ritz, M., & Pazdziora, E. (2015). Antibacterial polyethylene/clay nanocomposites using chlorhexidine as organic modifier. Materials Today: Proceedings, 2(1), 246-252.

31 Terui, Y., & Hirokawa, K. (1994). Fourier transform infrared emission spectra of poly(vinyl acetate) enhanced by the island structure of gold. Vibrational Spectroscopy, 6(3), 309-314. http://dx.doi.org/10.1016/0924-2031(93)E0065-A.

32 Yang, D., Yuan, P., Zhu, J. X., & He, H.-P. (2007). Synthesis and characterization of antibacterial compounds using montmorillonite and chlorhexidine acetate. Journal of Thermal Analysisand Calorimery, 89(3), 847-852. http://dx.doi.org/10.1007/s10973-006-8318-3.

33 Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S., & Yang, M. (2005). Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polymer Degradation & Stability, 87(1), 183-189. http://dx.doi.org/10.1016/j.polymdegradstab.2004.08.005.

34 Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. http://dx.doi.org/10.1016/j.matdes.2014.12.027.

35 Zhang, Q., Naito, K., Qi, B., & Kagawa, Y. (2009). Epoxy nanocomposites based on high temperature pyridinium-modified clays. Journal of Nanoscience and Nanotechnology, 9(1), 209-215. http://dx.doi.org/10.1166/jnn.2009.J057. PMid:19441298.

36 Muñoz-Shugulí, C., Rodríguez, F. J., Bruna, J. E., Galotto, M. J., Sarantópoulos, C., Perez, M. A. F., & Padula, M. (2019). Cetylpyridinium bromide-modified montmorillonite as filler in low density polyethylene nanocomposite films. Applied Clay Science, 168, 203-210. http://dx.doi.org/10.1016/j.clay.2018.10.020.

37 Lujan-Acosta, R., Sánchez-Valdes, S., Ramírez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S., Lozano-Ramirez, T., & Lafleur, P. G. (2014). Effect of amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146(3), 437-445. http://dx.doi.org/10.1016/j.matchemphys.2014.03.050.

38 Durmuş, A., Woo, M., Kaşgöz, A., Macosko, C. W., & Tsapatsis, M. (2007). Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. European Polymer Journal, 43(9), 3737-3749. http://dx.doi.org/10.1016/j.eurpolymj.2007.06.019.

39 Olewnik, E., Garman, K., & Czerwiński, W. (2010). Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. Journal of Thermal Analysis and Calorimetry, 101(1), 323-329. http://dx.doi.org/10.1007/s10973-010-0690-3.

40 Dadfar, S. M. A., Alemzadeh, I., Dadfar, S. M. R., & Vosoughi, M. (2011). Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Materials & Design, 32(4), 1806-1813. http://dx.doi.org/10.1016/j.matdes.2010.12.028.

41 Passador, F. R., Travain, D. R., Backes, E. H., Ruvolo, A. Fo., & Pessan, L. A. (2013). HDPE/LLDPE blend-based nanocomposites – part II: evaluation of thermal, optical and transport properties. Polímeros: Ciência e Tecnologia, 23(6), 748-757. http://dx.doi.org/10.4322/polimeros.2013.065.

42 Conceição, I. D., Silva, L. R. C., Carvalho, L. H., Costa, T. H. C., Silva, H. S., Alves, T. S., Barbosa, R., & Sousa, R. R. M. (2019). Evaluation of the effect of plasma treatment on the surface of green polyethylene and vermiculite clay films. Matéria, 24(4), e-12492.

43 Almansoori, A., Majewski, C., & Rodenburg, C. (2017). Nanoclay/polymer composite powders for use in laser sintering applications: effects of nanoclay plasma treatment. JOM, 69(11), 2278-2285. http://dx.doi.org/10.1007/s11837-017-2408-5. PMid:31983865.

44 Min, K. D., Kim, M. Y., Choi, K.-Y., Lee, J. H., & Lee, S.-G. (2006). Effect of layered silicates on the crystallinity and mechanical properties of HDPE/MMT nanocomposite blown films. Polymer Bulletin, 57(1), 101-108. http://dx.doi.org/10.1007/s00289-006-0537-z.
 

6356f960a9539536885c7e54 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections