Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210093
Polímeros: Ciência e Tecnologia
Original Article

Fatigue damage propagation and creep behavior on sisal/epoxy composites

Mateus da Silva Batista; Linconl Araujo Teixeira; Alisson de Souza Louly; Sayra Oliveira Silva; Sandra Maria da Luz

Downloads: 0
Views: 65

Abstract

The lack of knowledge about the behavior under creep and fatigue limits the use of polymeric composites reinforced with natural fibers. Thus, this work assessed the behavior of epoxy composites reinforced with sisal fibers under tensile, fatigue, and creep tests. Also, thermogravimetry and scanning electron microscopy assessed the sodium hydroxide (NaOH) treatment efficiency in sisal fibers. Further, differential scanning calorimetry determined the degree of cure of the composites, and stereomicroscopy allowed the evaluation of the surface’s fracture. As a result, the tensile strength of the composite was 1.4 times the value of neat epoxy resin after 100,000 cycles in the fatigue test. Moreover, when loaded with 20% of the maximum tensile strength, it is estimated that the composite resists 200,000 h without rupturing by creep. To conclude, the efficient adhesion between sisal fibers and epoxy obtained by NaOH treatment allowed good mechanical behavior to the epoxy composite.

 

 

Keywords

natural fibers, NaOH treatment, mechanical properties, thermal behavior

References

1 Fitzgerald, A., Proud, W., Kandemir, A., Murphy, R. J., Jesson, D. A., Trask, R. S., Hamerton, I., & Longana, M. L. (2021). A life cycle engineering perspective on biocomposites as a solution for a sustainable recovery. Sustainability, 13(3), 1160. http://dx.doi.org/10.3390/su13031160.

2 Amroune, S., Bezazi, A., Dufresne, A., Scarpa, F., & Imad, A. (2021). Investigation of the date palm fiber for green composites reinforcement: thermo-physical and mechanical properties of the fiber. Journal of Natural Fibers, 18(5), 717-734. http://dx.doi.org/10.1080/15440478.2019.1645791.

3 Bezazi, A., Boumediri, H., Garcia del Pino, G., Bezzazi, B., Scarpa, F., Reis, P. N. B., & Dufresne, A. (2020). Alkali treatment effect on physicochemical and tensile properties of date palm rachis fibers. Journal of Natural Fibers, 1-18. http://dx.doi.org/10.1080/15440478.2020.1848726.

4 del Pino, G. G., Bezazi, A., Boumediri, H., Kieling, A. C., Silva, C. C., Dehaini, J., Rivera, J. L. V., Valenzuela, M. G. S., Díaz, F. R. V., & Panzera, T. H. (2021). Hybrid epoxy composites made from treated curauá fibres and organophilic clay. Journal of Composite Materials, 55(1), 57-69. http://dx.doi.org/10.1177/0021998320945785.

5 Muthu, S. S. (Ed.) (2019). Green composites. Singapore: Springer. http://dx.doi.org/10.1007/978-981-13-1972-3.

6 Tavares, S. M. O., & Castro, P. M. S. T. (2017). An overview of fatigue in aircraft structures. Fatigue & Fracture of Engineering Materials & Structures, 40(10), 1510-1529. http://dx.doi.org/10.1111/ffe.12631.

7 Zhang, M., Lv, H., Kang, H., Zhou, W., & Zhang, C. (2019). A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks. International Journal of Hydrogen Energy, 44(47), 25777-25799. http://dx.doi.org/10.1016/j.ijhydene.2019.08.001.

8 Guo, W., Cao, H. R., Zi, Y. Y., & He, Z. J. (2018). Material analysis of the fatigue mechanism of rollers in tapered roller bearings. Science China. Technological Sciences, 61(7), 1003-1011. http://dx.doi.org/10.1007/s11431-017-9249-2.

9 Hamidi, H., Xiong, W., Hoa, S. V., & Ganesan, R. (2018). Fatigue behavior of thick composite laminates under flexural loading. Composite Structures, 200, 277-289. http://dx.doi.org/10.1016/j.compstruct.2018.05.149.

10 Vassilopoulos, A. P. (2020). The history of fiber-reinforced polymer composite laminate fatigue. International Journal of Fatigue, 134, 105512. http://dx.doi.org/10.1016/j.ijfatigue.2020.105512.

11 Liang, S., Gning, P. B., & Guillaumat, L. (2012). A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Composites Science and Technology, 72(5), 535-543. http://dx.doi.org/10.1016/j.compscitech.2012.01.011.

12 Mahboob, Z., & Bougherara, H. (2020). Strain amplitude controlled fatigue of Flax-epoxy laminates. Composites. Part B, Engineering, 186, 107769. http://dx.doi.org/10.1016/j.compositesb.2020.107769.

13 Jia, Y., & Fiedler, B. (2020). Tensile creep behaviour of unidirectional flax fibre reinforced bio-based epoxy composites. Composites Communications, 18, 5-12. http://dx.doi.org/10.1016/j.coco.2019.12.010.

14 Achereiner, F., Engelsing, K., Bastian, M., & Heidemeyer, P. (2013). Accelerated creep testing of polymers using the stepped isothermal method. Polymer Testing, 32(3), 447-454. http://dx.doi.org/10.1016/j.polymertesting.2013.01.014.

15 Guedes, R. M. (2018). A systematic methodology for creep master curve construction using the stepped isostress method (SSM): a numerical assessment. Mechanics of Time-Dependent Materials, 22(1), 79-93. http://dx.doi.org/10.1007/s11043-017-9353-0.

16 Fairhurst, A., Thommen, M., & Rytka, C. (2019). Comparison of short and long term creep testing in high performance polymers. Polymer Testing, 78, 105979. http://dx.doi.org/10.1016/j.polymertesting.2019.105979.

17 Feng, N. L., Dharmalingam, S., Zakaria, K. A., & Selamat, M. Z. (2019). Investigation on the fatigue life characteristic of kenaf / glass woven-ply reinforced metal sandwich materials. The Journal of Sandwich Structures & Materials, 21(7), 2440-2455. http://dx.doi.org/10.1177/1099636217729910.

18 Tanks, J., Rader, K., Sharp, S., & Sakai, T. (2017). Accelerated creep and creep-rupture testing of transverse unidirectional carbon/epoxy lamina based on the stepped isostress method. Composite Structures, 159, 455-462. http://dx.doi.org/10.1016/j.compstruct.2016.09.096.

19 Teixeira, L. A., Dalla, L. V., Jr., & Luz, S. M. (2021). Chemical treatment of curaua fibres and its effect on the mechanical performance of fibre/polyester composites. Plastics, Rubber and Composites, 50(4), 189-199. http://dx.doi.org/10.1080/14658011.2020.1862978.

20 Spinacé, M. A. S., Lambert, C. S., Fermoselli, K. K. G., & De Paoli, M.-A. (2009). Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers, 77(1), 47-53. http://dx.doi.org/10.1016/j.carbpol.2008.12.005.

21 Silva, S. O., Teixeira, L. A., Gontijo, A. B., & Luz, S. M. (2021). Processing Characterization of Sisal/Epoxy Prepregs. Journal of Research Updates in Polymer Science, 10, 42-50. http://dx.doi.org/10.6000/1929-5995.2021.10.6.

22 Libera, V. D., Jr., Leão, R. M., Steier, V. F., & Luz, S. M. (2020). Influence of cure agent, treatment and fibre content on the thermal behaviour of a curaua/epoxy prepreg. Plastics, Rubber and Composites, 49(5), 214-221. http://dx.doi.org/10.1080/14658011.2020.1729658.

23 American Society for Testing and Materials – ASTM. (2012). ASTM D3479/D3479M-12: Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. West Conshohocken: ASTM. http://dx.doi.org/10.1520/D3479_D3479M-12.

24 Venkatachalam, S., & Murthy, H. (2018). Damage characterization and fatigue modeling of CFRP subjected to cyclic loading. Composite Structures, 202, 1069-1077. http://dx.doi.org/10.1016/j.compstruct.2018.05.030.

25 American Society for Testing and Materials – ASTM. (2017). ASTM D3039/D3039M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. West Conshohocken: ASTM. http://dx.doi.org/10.1520/D3039_D3039M-17.

26 Sreekumar, P. A., Thomas, S. P., Saiter, J., Joseph, K., Unnikrishnan, G., & Thomas, S. (2009). Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites. Part A, Applied Science and Manufacturing, 40(11), 1777-1784. http://dx.doi.org/10.1016/j.compositesa.2009.08.013.

27 Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: a review of adequate materials for automotive applications. Composites. Part B, Engineering, 44(1), 120-127. http://dx.doi.org/10.1016/j.compositesb.2012.07.004.

28 Gudayu, A. D., Steuernagel, L., Meiners, D., & Gideon, R. (2020). Effect of surface treatment on moisture absorption, thermal, and mechanical properties of sisal fiber. Journal of Industrial Textiles, 1-21. http://dx.doi.org/10.1177/1528083720924774.

29 Chaitanya, S., & Singh, I. (2018). Sisal fiber‐reinforced green composites: effect of ecofriendly fiber treatment. Polymer Composites, 39(12), 4310-4321. http://dx.doi.org/10.1002/pc.24511.

30 Chaishome, J., & Rattanapaskorn, S. (2017). The influence of alkaline treatment on thermal stability of flax fibres. IOP Conference Series. Materials Science and Engineering, 191, 012007. http://dx.doi.org/10.1088/1757-899X/191/1/012007.

31 Libera, V. D., Jr. (2019). Laminados de fibra de curauá/epóxi obtidos a partir de pré-impregnados (Dissertação de mestrado). Universidade de Brasília, Brasília. Retrieved in 2021, November 15, from https://repositorio.unb.br/handle/10482/35728

32 Libera, V. D., Teixeira, L. A., Leão, R. M., & Luz, S. M. (2019). Evaluation of thermal behavior and cure kinetics of a curauá fiber prepreg by the non-isothermal method. Materials Today: Proceedings, 8(Pt 3), 839-846. http://dx.doi.org/10.1016/j.matpr.2019.02.026.

33 Vidil, T., Tournilhac, F., Musso, S., Robisson, A., & Leibler, L. (2016). Control of reactions and network structures of epoxy thermosets. Progress in Polymer Science, 62, 126-179. http://dx.doi.org/10.1016/j.progpolymsci.2016.06.003.

34 Hu, X., Wang, Y., Yu, J., Zhu, J., & Hu, Z. (2017). The mechanical and fatigue properties of flowable crosslink thermoplastic polymer blends based on self-catalysis of transesterification. Journal of Applied Polymer Science, 134(24), 1-9. http://dx.doi.org/10.1002/app.44964.

35 Salasinska, K., Barczewski, M., Górny, R., & Kloziński, A. (2018). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528. http://dx.doi.org/10.1007/s00289-017-2163-3.

36 Venkatachalam, N., Navaneethakrishnan, P., Rajsekar, R., & Shankar, S. (2016). Effect of pretreatment methods on properties of natural fiber composites: a review. Polymers & Polymer Composites, 24(7), 555-566. http://dx.doi.org/10.1177/096739111602400715.

37 Van Paepegem, W., & Degrieck, J. (2002). A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites. International Journal of Fatigue, 24(7), 747-762. http://dx.doi.org/10.1016/S0142-1123(01)00194-3.

38 Chawla, K. K. (2019). Designing with composites. In: K. K. Chawla (Ed.), Composite materials (pp. 491-501). USA: Springer International Publishing.

39 Bensadoun, F., Vallons, K. A. M., Lessard, L. B., Verpoest, I., & Van Vuure, A. W. (2016). Fatigue behaviour assessment of flax–epoxy composites. Composites. Part A, Applied Science and Manufacturing, 82, 253-266. http://dx.doi.org/10.1016/j.compositesa.2015.11.003.

40 Padmaraj, N. H., Vijaya, K. M., & Dayananda, P. (2020). Experimental study on the tension-tension fatigue behaviour of glass/epoxy quasi-isotropic composites. Journal of King Saud University - Engineering Science, 32(6), 396-401. http://dx.doi.org/10.1016/j.jksues.2019.04.007.

41 Webo, W., Maringa, M., & Masu, L. (2020). The combined effect of mercerisation, silane treatment and acid hydrolysis on the mechanical properties of sisal fibre/epoxy resin composites. MRS Advances, 5(23), 1225-1233. http://dx.doi.org/10.1557/adv.2020.122.

42 Cavalcanti, D. K. K., Banea, M. D., Neto, J. S. S., Lima, R. A. A., Silva, L. F. M., & Carbas, R. J. C. (2019). Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Composites. Part B, Engineering, 175, 107149. http://dx.doi.org/10.1016/j.compositesb.2019.107149.

43 Mallick, P. K. (2007). Fiber-reinforced composites materials, manufacturing, and design. USA: CRC Press. http://dx.doi.org/10.1201/9781420005981.

44 Yadav, D., Selokar, G. R., Agrawal, A., Mishra, V., & Khan, I. A. (2021). Effect of concentration of NaOH treatment on mechanical properties of epoxy/sisal fiber composites. IOP Conference Series. Materials Science and Engineering, 1017(1), 012028. http://dx.doi.org/10.1088/1757-899X/1017/1/012028.

45 Kobeissi, A., Rahme, P., Leotoing, L., & Guines, D. (2020). Strength characterization of glass/epoxy plain weave composite under different biaxial loading ratios. Journal of Composite Materials, 54(19), 2549-2563. http://dx.doi.org/10.1177/0021998319899135.

46 Queiroz, H. F. M., Banea, M. D., & Cavalcanti, D. K. K. (2020). Experimental analysis of adhesively bonded joints in synthetic- and natural fibre-reinforced polymer composites. Journal of Composite Materials, 54(9), 1245-1255. http://dx.doi.org/10.1177/0021998319876979.

47 Wu, T., Liu, Y., Li, N., Huang, G.-W., Qu, C.-B., & Xiao, H.-M. (2019). Cryogenic mechanical properties of epoxy resin toughened by hydroxyl-terminated polyurethane. Polymer Testing, 74, 45-56. http://dx.doi.org/10.1016/j.polymertesting.2018.11.048.

48 Sathishkumar, G. K., Gautham, G., Shankar, G. G., Rajkumar, G., Karpagam, R., Dhivya, V., Zacharia, G., Gopinath, B., Karthik, P., & Charles, M. M. (2021). Influence of lignite fly ash on the structural and mechanical properties of banana fiber containing epoxy polymer matrix composite. Polymer Bulletin, 79(1), 285-306. http://dx.doi.org/10.1007/s00289-020-03524-6.

49 Oliveira, A., Becker, C. M., & Amico, S. C. (2015). Avaliação das características da resina epóxi com diferentes aditivos desaerantes. Polímeros, 25(2), 186-191. http://dx.doi.org/10.1590/0104-1428.1661.

50 Wang, H., Memon, H., Hassan, E. A. M., Miah, M. S., & Ali, M. A. (2019). Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials (Basel), 12(8), 1226. http://dx.doi.org/10.3390/ma12081226. PMid:30991643.

51 Wong, S., & Shanks, R. (2008). Creep behaviour of biopolymers and modified flax fibre composites. Composite Interfaces, 15(2-3), 131-145. http://dx.doi.org/10.1163/156855408783810894.
 

62c5d147a953952d121759c3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections