Impact of controlled extensional flow during extrusion of PP, PVDF and LDPE
Marcel Andrey de Goes; João Paulo Ferreira Santos; Benjamim de Melo Carvalho
Abstract
Keywords
References
1 Keller, A., & Kolnaar, H. W. H. (2006). Flow-induced orientation and structure formation. In R. W. Cahn, P. Haasen & E. J. Kramer (Eds.),
2 Covas, J. A., Novais, R. M., & Paiva, M. C. (2011). A comparative study of the dispersion of carbon nanofibres in polymer melts. In
3 Vilaverde, C., Santos, R. M., Paiva, M. C., & Covas, J. A. (2015). Dispersion and re-agglomeration of graphite nanoplates in polypropylene melts under controlled flow conditions.
4 Santos, R. M., Mould, S. T., Formánek, P., Paiva, M. C., & Covas, J. A. (2018). Effects of particle size and surface chemistry on the dispersion of graphite nanoplates in polypropylene composites.
5 Matsumoto, K., Nakade, Y., Sugimoto, K., & Tanaka, T. (2017). An investigation on dispersion state of graphene in polypropylene/graphite nanocomposite with extensional flow mixing.
6 Carson, S. O., Maia, J. M., & Covas, J. A. (2016). A New extensional mixing element for improved dispersive mixing in twin-screw extrusion, Part 2: experimental validation for immiscible polymer blends.
7 Chen, H., & Maia, J. M. (2021). Improving dispersive mixing in compatibilized polystyrene/polyamide-6 blends via extensiondominated reactive single-screw extrusion.
8 Goes, M. A., Woicichowski, L. A., Rosa, R. V. V., Santos, J. P. F., & Carvalho, B. M. (2021). Improving the dispersion of MWCNT and MMT in PVDF melts employing controlled extensional flows.
9 Mileva, D., Tranchida, D., & Gahleitner, M. (2018). Designing polymer crystallinity: an industrial perspective.
10 Maddah, H. A. (2016). Polypropylene as a promising plastic: a review.
11 Santos, J. P. F., Arjmand, M., Melo, G. H. F., Chizari, K., Bretas, R. E. S., & Sundararaj, U. (2018). Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen-doped carbon nanotubes.
12 Kumar Sen, S., & Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): a review.
13 Liu, Z. H., Pan, C. T., Lin, L. W., & Lai, H. W. (2013). Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning.
14 Chen, X., Xu, S., Yao, N., & Shi, Y. (2010). 1.6 v nanogenerator for mechanical energy harvesting using PZT nanofibers.
15 Boon, J., Challa, G., & Van Krevelen, D. W. (1968). Crystallization kinetics of isotactic polystyrene. I. Spherulitic growth rate.
16 Boon, J., Challa, G., & Van Krevelen, D. W. (1968). Crystallization kinetics of isotactic polystyrene. II. Influence of thermal history on number of nuclei.
17 Agar, A. W., Prank, F. C., & Keller, A. (1959). Crystallinity effects in the electron microscopy of polyethylene.
18 Angelloz, C., Fulchiron, R., Douillard, A., Chabert, B., Fillit, R., Vautrin, A., & David, L. (2000). Crystallization of isotactic polypropylene under high pressure (γ phase).
19 Steiger, M. (2005). Crystal growth in porous materials - II: influence of crystal size on the crystallization pressure.
20 Boyer, S. A. E., & Haudin, J.-M. (2010). Crystallization of polymers at constant and high cooling rates: A new hot-stage microscopy set-up.
21 Kong, W., Zhu, B., Su, F., Wang, Z., Shao, C., Wang, Y., Liu, C., & Shen, C. (2019). Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization.
22 Lagasse, R. R., & Maxwell, B. (1976). An experimental study of the kinetics of polymer crystallization during shear flow.
23 Amirdine, J., Htira, T., Lefevre, N., Fulchiron, R., Mathieu, N., Zinet, M., Sinturel, C., Burghelea, T., & Boyard, N. (2021). A novel approach to the study of extensional flow-induced crystallization.
24 Chellamuthu, M., Arora, D., Winter, H. H., & Rothstein, J. P. (2011). Extensional flow-induced crystallization of isotactic poly-1-butene using a filament stretching rheometer.
25 Haas, T. W., & Maxwell, B. (1969). Effects of shear stress on the crystallization of linear polyethylene and polybutene‐1.
26 Bischoff White, E. E., Henning Winter, H., & Rothstein, J. P. (2012). Extensional-flow-induced crystallization of isotactic polypropylene.
27 Harris, A. M., & Lee, E. C. (2008). Improving mechanical performance of injection molded PLA by controlling crystallinity.
28 Feast, W. J., Tsibouklis, J., Pouwer, K. L., Groenendaal, L., & Meijer, E. W. (1996). Synthesis, processing and material properties of conjugated polymers.
29 Jamali, S., Paiva, M. C., & Covas, J. A. (2013). Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes.
30 Feigl, K., Tanner, F. X., Edwards, B. J., & Collier, J. R. (2003). A numerical study of the measurement of elongational viscosity of polymeric fluids in a semihyperbolically converging die.
31 Líbano, E. V. D. G., Visconte, L. L. Y., & Pacheco, É. B. A. V. (2012). Thermal properties of polypropylene and organophilic bentonite.
32 Peng, Q.-Y., Cong, P.-H., Liu, X.-J., Liu, T.-X., Huang, S., & Li, T.-S. (2009). The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties.
33 Borhani zarandi, M., Bioki, H. A., Mirbagheri, Z.-a., Tabbakh, F., & Mirjalili, G. (2012). Effect of crystallinity and irradiation on thermal properties and specific heat capacity of LDPE & LDPE/EVA.
34 Münstedt, H. (2018). Extensional rheology and processing of polymeric materials.
35 Tabatabaei, S. H., Carreau, P. J., & Ajji, A. (2009). Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation.
36 Petrie, C. J. S. (2006). One hundred years of extensional flow.
37 Pistor, V., Ornaghi, F. G., Ornaghi, H. L., & Zattera, A. J. (2012). Dynamic mechanical characterization of epoxy/epoxycyclohexyl-POSS nanocomposites.
38 Jawaid, M., Abdul Khalil, H. P. S., Hassan, A., Dungani, R., & Hadiyane, A. (2013). Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites.
39 Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites.
40 Das, A., & Satapathy, B. K. (2011). Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites.
41 Correia, D. M., Costa, C. M., Lizundia, E., Sabater i Serra, R., Gómez-Tejedor, J. A., Biosca, L. T., Meseguer-Dueñas, J. M., Gomez Ribelles, J. L., & Lanceros-Méndez, S. (2019). Influence of Cation and anion type on the formation of the electroactive β-phase and thermal and dynamic mechanical properties of poly(vinylidene fluoride)/ionic liquids blends.
42 Sencadas, V., Lanceros-Méndez, S., Sabater i Serra, R., Andrio Balado, A., & Gómez Ribelles, J. L. (2012). Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy.
43 Therese Pick, L., Harkin-Jones, E., Jovita Oliveira, M., & Clara Cramez, M. (2006). The effect of cooling rate on the impact performance and dynamic mechanical properties of rotationally molded metallocene catalyzed linear low density polyethylene.
44 Joseph, K., Thomas, S., & Pavithran, C. (1993). Dynamic mechanical properties of short sisal fiber reinforced low density polyethylene composites.
45 Majewsky, M., Bitter, H., Eiche, E., & Horn, H. (2016). Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC).
46 Sližová, M., Stašek, M., & Raab, M. (2020). Polypropylene after thirty years of storage: mechanical proof of heterogeneous aging.
47 Santos, J. P. F., da Silva, A. B., Arjmand, M., Sundararaj, U., & Bretas, R. E. S. (2018). Nanofibers of poly(vinylidene fluoride)/copper nanowire: microstructural analysis and dielectric behavior.
48 Li, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property.
49 Wu, W., & Wang, Y. (2020). Physical and thermal properties of high-density polyethylene film modified with polypropylene and linear low-density polyethylene.
50 Dusunceli, N., & Colak, O. U. (2008). Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers.