Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Impact of controlled extensional flow during extrusion of PP, PVDF and LDPE

Marcel Andrey de Goes; João Paulo Ferreira Santos; Benjamim de Melo Carvalho

Downloads: 0
Views: 45


The structure and properties of semi-crystalline polymers can be drastically tailored by extensional flows. In this work, polypropylene (PP), Polyvinylidene fluoride (PVDF) and Low Density Polyethylene (LDPE) were melt extruded through a sequence of rings designed to apply controlled extensional flows in the polymer melts. The effects of extensional flow on the structure and properties of the extruded filaments were then evaluated by mechanical tensile tests, dynamic-mechanical analysis (DMA) and Differential Scanning Calorimetry (DSC). The DMA and tensile tests revealed a significant increase in terms of static and dynamic moduli for the polymers extruded through the extensional flow device. PP, PVDF and LDPE had their dynamic moduli enhanced 19%, 40% and 77%, respectively. These results were ascribed to the enhancement in crystallinity and orientation degree of the polymer chains induced by the extensional flow. The crystallinity was increased around 9% for PP, PVDF and LDPE extruded under extensional conditions.




extensional flow, extrusion, semi-crystalline polymers, crystallinity increase


1 Keller, A., & Kolnaar, H. W. H. (2006). Flow-induced orientation and structure formation. In R. W. Cahn, P. Haasen & E. J. Kramer (Eds.), Materials science and technology (pp. 187-268). Germany: John Wiley & Sons, Ltda. http://dx.doi.org/10.1002/9783527603978.mst0210

2 Covas, J. A., Novais, R. M., & Paiva, M. C. (2011). A comparative study of the dispersion of carbon nanofibres in polymer melts. In Proceedings of the 27th World Congress of the Polymer Processing Society (pp. 1-5). Marocco: Polymer Processing Society. Retrieved in 2021, November 24, from https://repositorium.sdum.uminho.pt/bitstream/1822/14695/1/full_paper_dispersion_JAC_MCP.pdf

3 Vilaverde, C., Santos, R. M., Paiva, M. C., & Covas, J. A. (2015). Dispersion and re-agglomeration of graphite nanoplates in polypropylene melts under controlled flow conditions. Composites. Part A, Applied Science and Manufacturing, 78, 143-151. http://dx.doi.org/10.1016/j.compositesa.2015.08.010.

4 Santos, R. M., Mould, S. T., Formánek, P., Paiva, M. C., & Covas, J. A. (2018). Effects of particle size and surface chemistry on the dispersion of graphite nanoplates in polypropylene composites. Polymers, 10(2), 222. http://dx.doi.org/10.3390/polym10020222. PMid:30966257.

5 Matsumoto, K., Nakade, Y., Sugimoto, K., & Tanaka, T. (2017). An investigation on dispersion state of graphene in polypropylene/graphite nanocomposite with extensional flow mixing. AIP Conference Proceedings, 1914(1), 150005. http://dx.doi.org/10.1063/1.5016782.

6 Carson, S. O., Maia, J. M., & Covas, J. A. (2016). A New extensional mixing element for improved dispersive mixing in twin-screw extrusion, Part 2: experimental validation for immiscible polymer blends. Advances in Polymer Technology, 37(1), 167-175. http://dx.doi.org/10.1002/adv.21653.

7 Chen, H., & Maia, J. M. (2021). Improving dispersive mixing in compatibilized polystyrene/polyamide-6 blends via extensiondominated reactive single-screw extrusion. Journal of Polymer Engineering, 41(5), 397-403. http://dx.doi.org/10.1515/polyeng-2020-0230.

8 Goes, M. A., Woicichowski, L. A., Rosa, R. V. V., Santos, J. P. F., & Carvalho, B. M. (2021). Improving the dispersion of MWCNT and MMT in PVDF melts employing controlled extensional flows. Journal of Applied Polymer Science, 138(17), 50274. http://dx.doi.org/10.1002/app.50274.

9 Mileva, D., Tranchida, D., & Gahleitner, M. (2018). Designing polymer crystallinity: an industrial perspective. Polymer Crystallization, 1(2), e10009. http://dx.doi.org/10.1002/pcr2.10009.

10 Maddah, H. A. (2016). Polypropylene as a promising plastic: a review. American Journal of Political Science, 6(1), 1-11. http://dx.doi.org/10.5923/j.ajps.20160601.01.

11 Santos, J. P. F., Arjmand, M., Melo, G. H. F., Chizari, K., Bretas, R. E. S., & Sundararaj, U. (2018). Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen-doped carbon nanotubes. Materials & Design, 141, 333-341. http://dx.doi.org/10.1016/j.matdes.2017.12.052.

12 Kumar Sen, S., & Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): a review. Journal of Environmental Chemical Engineering, 3(1), 462-473. http://dx.doi.org/10.1016/j.jece.2015.01.003.

13 Liu, Z. H., Pan, C. T., Lin, L. W., & Lai, H. W. (2013). Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors and Actuators. A, Physical, 193, 13-24. http://dx.doi.org/10.1016/j.sna.2013.01.007.

14 Chen, X., Xu, S., Yao, N., & Shi, Y. (2010). 1.6 v nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Letters, 10(6), 2133-2137. http://dx.doi.org/10.1021/nl100812k. PMid:20499906.

15 Boon, J., Challa, G., & Van Krevelen, D. W. (1968). Crystallization kinetics of isotactic polystyrene. I. Spherulitic growth rate. Journal of Polymer Science. Part A-2, Polymer Physics, 6(10), 1791-1801. http://dx.doi.org/10.1002/pol.1968.160061009.

16 Boon, J., Challa, G., & Van Krevelen, D. W. (1968). Crystallization kinetics of isotactic polystyrene. II. Influence of thermal history on number of nuclei. Journal of Polymer Science. Part A-2, Polymer Physics, 6(11), 1835-1851. http://dx.doi.org/10.1002/pol.1968.160061102.

17 Agar, A. W., Prank, F. C., & Keller, A. (1959). Crystallinity effects in the electron microscopy of polyethylene. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 4(37), 32-55. http://dx.doi.org/10.1080/14786435908238226.

18 Angelloz, C., Fulchiron, R., Douillard, A., Chabert, B., Fillit, R., Vautrin, A., & David, L. (2000). Crystallization of isotactic polypropylene under high pressure (γ phase). Macromolecules, 33(11), 4138-4145. http://dx.doi.org/10.1021/ma991813e.

19 Steiger, M. (2005). Crystal growth in porous materials - II: influence of crystal size on the crystallization pressure. Journal of Crystal Growth, 282(3-4), 470-481. http://dx.doi.org/10.1016/j.jcrysgro.2005.05.008.

20 Boyer, S. A. E., & Haudin, J.-M. (2010). Crystallization of polymers at constant and high cooling rates: A new hot-stage microscopy set-up. Polymer Testing, 29(4), 445-452. http://dx.doi.org/10.1016/j.polymertesting.2010.02.003.

21 Kong, W., Zhu, B., Su, F., Wang, Z., Shao, C., Wang, Y., Liu, C., & Shen, C. (2019). Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. Polymer, 168, 77-85. http://dx.doi.org/10.1016/j.polymer.2019.02.019.

22 Lagasse, R. R., & Maxwell, B. (1976). An experimental study of the kinetics of polymer crystallization during shear flow. Polymer Engineering and Science, 16(3), 189-199. http://dx.doi.org/10.1002/pen.760160312.

23 Amirdine, J., Htira, T., Lefevre, N., Fulchiron, R., Mathieu, N., Zinet, M., Sinturel, C., Burghelea, T., & Boyard, N. (2021). A novel approach to the study of extensional flow-induced crystallization. Polymer Testing, 96, 107060. http://dx.doi.org/10.1016/j.polymertesting.2021.107060.

24 Chellamuthu, M., Arora, D., Winter, H. H., & Rothstein, J. P. (2011). Extensional flow-induced crystallization of isotactic poly-1-butene using a filament stretching rheometer. Journal of Rheology (New York, N.Y.), 55(4), 901-920. http://dx.doi.org/10.1122/1.3593471.

25 Haas, T. W., & Maxwell, B. (1969). Effects of shear stress on the crystallization of linear polyethylene and polybutene‐1. Polymer Engineering and Science, 9(4), 225-241. http://dx.doi.org/10.1002/pen.760090402.

26 Bischoff White, E. E., Henning Winter, H., & Rothstein, J. P. (2012). Extensional-flow-induced crystallization of isotactic polypropylene. Rheologica Acta, 51(4), 303-314. http://dx.doi.org/10.1007/s00397-011-0595-5.

27 Harris, A. M., & Lee, E. C. (2008). Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 107(4), 2246-2255. http://dx.doi.org/10.1002/app.27261.

28 Feast, W. J., Tsibouklis, J., Pouwer, K. L., Groenendaal, L., & Meijer, E. W. (1996). Synthesis, processing and material properties of conjugated polymers. Polymer, 37(22), 5017-5047. http://dx.doi.org/10.1016/0032-3861(96)00439-9.

29 Jamali, S., Paiva, M. C., & Covas, J. A. (2013). Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polymer Testing, 32(4), 701-707. http://dx.doi.org/10.1016/j.polymertesting.2013.03.005.

30 Feigl, K., Tanner, F. X., Edwards, B. J., & Collier, J. R. (2003). A numerical study of the measurement of elongational viscosity of polymeric fluids in a semihyperbolically converging die. Journal of Non-Newtonian Fluid Mechanics, 115(2-3), 191-215. http://dx.doi.org/10.1016/j.jnnfm.2003.08.002.

31 Líbano, E. V. D. G., Visconte, L. L. Y., & Pacheco, É. B. A. V. (2012). Thermal properties of polypropylene and organophilic bentonite. Polímeros: Ciência e Tecnologia, 22(5), 430-435. http://dx.doi.org/10.1590/S0104-14282012005000063.

32 Peng, Q.-Y., Cong, P.-H., Liu, X.-J., Liu, T.-X., Huang, S., & Li, T.-S. (2009). The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. Wear, 266(7-8), 713-720. http://dx.doi.org/10.1016/j.wear.2008.08.010.

33 Borhani zarandi, M., Bioki, H. A., Mirbagheri, Z.-a., Tabbakh, F., & Mirjalili, G. (2012). Effect of crystallinity and irradiation on thermal properties and specific heat capacity of LDPE & LDPE/EVA. Applied Radiation and Isotopes, 70(1), 1-5. http://dx.doi.org/10.1016/j.apradiso.2011.09.001.

34 Münstedt, H. (2018). Extensional rheology and processing of polymeric materials. International Polymer Processing, 33(5), 594-618. http://dx.doi.org/10.3139/217.3532.

35 Tabatabaei, S. H., Carreau, P. J., & Ajji, A. (2009). Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation. Polymer, 50(17), 4228-4240. http://dx.doi.org/10.1016/j.polymer.2009.06.071.

36 Petrie, C. J. S. (2006). One hundred years of extensional flow. Journal of Non-Newtonian Fluid Mechanics, 137(1–3), 1-14. http://dx.doi.org/10.1016/j.jnnfm.2006.01.010.

37 Pistor, V., Ornaghi, F. G., Ornaghi, H. L., & Zattera, A. J. (2012). Dynamic mechanical characterization of epoxy/epoxycyclohexyl-POSS nanocomposites. Materials Science and Engineering A, 532, 339-345. http://dx.doi.org/10.1016/j.msea.2011.10.100.

38 Jawaid, M., Abdul Khalil, H. P. S., Hassan, A., Dungani, R., & Hadiyane, A. (2013). Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Composites. Part B, Engineering, 45(1), 619-624. http://dx.doi.org/10.1016/j.compositesb.2012.04.068.

39 Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction & Building Materials, 106, 149-159. http://dx.doi.org/10.1016/j.conbuildmat.2015.12.075.

40 Das, A., & Satapathy, B. K. (2011). Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites. Materials & Design, 32(3), 1477-1484. http://dx.doi.org/10.1016/j.matdes.2010.08.041.

41 Correia, D. M., Costa, C. M., Lizundia, E., Sabater i Serra, R., Gómez-Tejedor, J. A., Biosca, L. T., Meseguer-Dueñas, J. M., Gomez Ribelles, J. L., & Lanceros-Méndez, S. (2019). Influence of Cation and anion type on the formation of the electroactive β-phase and thermal and dynamic mechanical properties of poly(vinylidene fluoride)/ionic liquids blends. The Journal of Physical Chemistry C, 123(45), 27917-27926. http://dx.doi.org/10.1021/acs.jpcc.9b07986.

42 Sencadas, V., Lanceros-Méndez, S., Sabater i Serra, R., Andrio Balado, A., & Gómez Ribelles, J. L. (2012). Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. The European Physical Journal. E, Soft Matter, 35(5), 41. http://dx.doi.org/10.1140/epje/i2012-12041-x. PMid:22644136.

43 Therese Pick, L., Harkin-Jones, E., Jovita Oliveira, M., & Clara Cramez, M. (2006). The effect of cooling rate on the impact performance and dynamic mechanical properties of rotationally molded metallocene catalyzed linear low density polyethylene. Journal of Applied Polymer Science, 101(3), 1963-1971. http://dx.doi.org/10.1002/app.23709.

44 Joseph, K., Thomas, S., & Pavithran, C. (1993). Dynamic mechanical properties of short sisal fiber reinforced low density polyethylene composites. Journal of Reinforced Plastics and Composites, 12(2), 139-155. http://dx.doi.org/10.1177/073168449301200202.

45 Majewsky, M., Bitter, H., Eiche, E., & Horn, H. (2016). Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). The Science of the Total Environment, 568, 507-511. http://dx.doi.org/10.1016/j.scitotenv.2016.06.017. PMid:27333470.

46 Sližová, M., Stašek, M., & Raab, M. (2020). Polypropylene after thirty years of storage: mechanical proof of heterogeneous aging. Polymer Journal, 52(7), 775-781. http://dx.doi.org/10.1038/s41428-020-0327-8.

47 Santos, J. P. F., da Silva, A. B., Arjmand, M., Sundararaj, U., & Bretas, R. E. S. (2018). Nanofibers of poly(vinylidene fluoride)/copper nanowire: microstructural analysis and dielectric behavior. European Polymer Journal, 101, 46-55. http://dx.doi.org/10.1016/j.eurpolymj.2018.02.017.

48 Li, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials (Basel), 12(11), 1746. http://dx.doi.org/10.3390/ma12111746. PMid:31146397.

49 Wu, W., & Wang, Y. (2020). Physical and thermal properties of high-density polyethylene film modified with polypropylene and linear low-density polyethylene. Journal of Macromolecular Science, Part B: Physics, 59(4), 213-222. http://dx.doi.org/10.1080/00222348.2019.1709710.

50 Dusunceli, N., & Colak, O. U. (2008). Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers. International Journal of Plasticity, 24(7), 1224-1242. http://dx.doi.org/10.1016/j.ijplas.2007.09.003.

6358438da953951d605dbd83 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections