Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

13C ss-NMR Singular value decomposition and fitting for sorghum proteins conformation elucidation

Tatiana Santana Ribeiro; Juliana Aparecida Scramin; José Avelino Santos Rodrigues; Rubens Bernardes Filho; Luiz Alberto Colnago; Lucimara Aparecida Forato

Downloads: 0
Views: 55


Kafirins, water-insoluble proteins from Sweet Sorghum BR501 grains, have been an alternative to prepare edible coatings for food due to their hydrophobic character. In this work, the secondary structures (SS) content of reduced (SSr) and unreduced (SSu) kafirins were determined by 13C solid-state-NMR spectroscopy using areas of carbonyl peak. The SS elucidate by fitting the signal with the Lorentzian function shows 56% and 59% of α-helix and 40% and 12% of β-sheet structures for SSr and SSu, respectively. The SS also were elucidated by a Singular value decomposition- SVD method shows 55% and 49% of α-helix and 12% and 8% of β-sheet structure for SSr and SSu, respectively. Since SVD does not depend on the operator and has higher correlation coefficients for α-helix (0.96%) and β-sheet (0.91%), it is a reliable method to quantify the SS of insoluble proteins using the 13C NMR signal.




kafirin, secondary structures proteins, sweet sorghum, insoluble protein, solid-state 13C NMR spectroscopy


1 Chen, H., Tian, X., Yu, Q., Hu, W., Chen, J., & Zhou, L. (2021). Sweet sorghum stalks extract has antimicrobial activity. Industrial Crops and Products, 170, 113746. http://dx.doi.org/10.1016/j.indcrop.2021.113746.

2 Zegada-Lizarazu, W., & Monti, A. (2012). Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass and Bioenergy, 40, 1-12. http://dx.doi.org/10.1016/j.biombioe.2012.01.048.

3 Ratnavathi, C. V., Suresh, K., Kumar, B. S. V., Pallavi, M., Komala, V. V., & Seetharama, N. (2010). Study on genotypic variation for ethanol production from sweet sorghum juice. Biomass and Bioenergy, 34(7), 947-952. http://dx.doi.org/10.1016/j.biombioe.2010.02.002.

4 Shah, U., Dwivedi, D., Hackett, M., Al-Salami, H., Utikar, R. P., Blanchard, C., Gani, A., Rowles, M. R., & Johnson, S. K. (2021). Physicochemical characterization of kafirins extracted from sorghum grain and dried distillers grain with solubles related to their biomaterial functionality. Scientific Reports, 11(1), 15204. http://dx.doi.org/10.1038/s41598-021-94718-z. PMid:34312467.

5 Buchner, S., Kinnear, M., Crouch, I. J., Taylor, J., & Minnaar, A. (2011). Effect of the kafirin protein coating on sensory quality and shelf life of ‘Pacham Triumph’ pears during ripening. Journal of the Science of Food and Agriculture, 91(15), 2814-2820. http://dx.doi.org/10.1002/jsfa.4526. PMid:21725981.

6 Gao, C., Stading, M., Wellner, N., Parker, M. L., Noel, T. R., Mills, E. N. C., & Belton, P. S. (2006). Plasticization of a protein-based film by glycerol: a spectroscopic, mechanical and thermal study. Journal of Agricultural and Food Chemistry, 54(13), 4611-4616. http://dx.doi.org/10.1021/jf060611w. PMid:16787005.

7 Wu, S., Myers, D. J., & Johnson, L. A. (1997). Factors affecting yield and composition of zein extracted from commercial corn gluten meal. Cereal Chemistry, 74(3), 258-263. http://dx.doi.org/10.1094/CCHEM.1997.74.3.258.

8 Belton, P. S., Delgadillo, I., Halford, N. G., & Shewry, P. R. (2006). Kafirin structure and functionality. Journal of Cereal Science, 44(3), 272-286. http://dx.doi.org/10.1016/j.jcs.2006.05.004.

9 Laidlaw, H. K. C., Mace, E. S., Williams, S. B., Sakrewski, K., Mudge, A. M., Prentis, P. J., Jordan, D. R., & Godwin, I. D. (2010). Allelic variation of the β-, γ- and δ-kafirin genes in diverse sorghum genotypes. Theoretical and Applied Genetics, 121(7), 1227-1237. http://dx.doi.org/10.1007/s00122-010-1383-9. PMid:20563549.

10 Gao, C., Taylor, J., Wellner, N., Byaruhanga, Y. B., Parker, M. L., Mills, E. N. C., & Belton, P. S. (2005). Effect of preparation conditions on protein secondary structure and biofilm formation of kafirin. Journal of Agricultural and Food Chemistry, 53(2), 306-312. http://dx.doi.org/10.1021/jf0492666. PMid:15656666.

11 Wu, Y. V., Cluskey, J. E., & Jones, R. W. (1971). Sorghum prolamins: their optical rotatory dispersion, circular dichroism, and infrared spectra. Journal of Agricultural and Food Chemistry, 19(6), 1139-1143. http://dx.doi.org/10.1021/jf60178a008.

12 Duodu, K. G., Tang, H., Grant, A., Wellner, N., Belton, P. S., & Taylor, J. R. N. (2001). FTIR and solid state 13C NMR spectroscopy of proteins of wet cooked and popped sorghum and maize. Journal of Cereal Science, 33(3), 261-269. http://dx.doi.org/10.1006/jcrs.2000.0352.

13 Wang, Y., Tilley, M., Bean, S., Sun, X. S., & Wang, D. (2009). Comparison of methods for extracting kafirin proteins from distillers dried grains with solubles. Journal of Agricultural and Food Chemistry, 57(18), 8366-8372. http://dx.doi.org/10.1021/jf901713w. PMid:19754169.

14 Xiao, J., Li, Y., Li, J., Gonzalez, A. P., Xia, Q., & Huang, Q. (2015). Structure, morphology, and assembly behavior of kafirin. Journal of Agricultural and Food Chemistry, 63(1), 216-224. http://dx.doi.org/10.1021/jf504674z. PMid:25510968.

15 Dianda, N., Rouf, T. B., Bonilla, J. C., Hedrick, V., & Kokini, J. (2019). Effect of solvent polarity on the secondary structure, surface, and mechanical properties of biodegradable kafirin films. Journal of Cereal Science, 90, 102856. http://dx.doi.org/10.1016/j.jcs.2019.102856.

16 Olivera, N., Rouf, T. B., Bonilla, J. C., Carriazo, J. G., Dianda, N., & Kokini, J. L. (2019). Effect of LAPONITE addition on the mechanical, barrier and surface properties of novel biodegradable kafirin nanocomposite films. Journal of Food Engineering, 245, 24-32. http://dx.doi.org/10.1016/j.jfoodeng.2018.10.002.

17 Andrade, F. D., Forato, L. A., Bernardes, R., Fo., & Colnago, L. A. (2016). Quantification of protein secondary structure by 13C solid-state NMR. Analytical and Bioanalytical Chemistry, 408(14), 3875-3879. http://dx.doi.org/10.1007/s00216-016-9484-1. PMid:27068694.

18 Park, S.-H., & Bean, S. B. (2003). Investigation and optimization of the factors influencing sorghum protein extraction. Journal of Agricultural and Food Chemistry, 51(24), 7050-7054. http://dx.doi.org/10.1021/jf034533d. PMid:14611170.

19 Kricheldorf, H. R., & Müller, D. (1984). Secondary structure of peptides 16th. Characterization of proteins by means of 13C NMR CPMAS spectroscopy. Colloid & Polymer Science, 262(11), 856-861. http://dx.doi.org/10.1007/BF01452215.

20 Wishart, D. S., & Sykes, B. D. (1994). Chemical shifts as a tool for structure determination. Methods in Enzymology, 239, 363-392. http://dx.doi.org/10.1016/S0076-6879(94)39014-2. PMid:7830591.

21 Bicudo, T. C., Forato, L. A., Batista, L. A. R., & Colnago, L. A. (2005). Study of the conformation of γ-zeins in purified maize protein bodies by FTIR and NMR spectroscopy. Analytical and Bioanalytical Chemistry, 383(2), 291-296. http://dx.doi.org/10.1007/s00216-005-0003-z. PMid:16132146.

22 Byaruhanga, Y. B., Emmambux, M. N., Belton, P. S., Wellner, N., Ng, K. G., & Taylor, J. R. N. (2006). Alteration of kafirin and kafirin film structure by heating with microwave energy and tannin complexation. Journal of Agricultural and Food Chemistry, 54(12), 4198-4207. http://dx.doi.org/10.1021/jf052942z. PMid:16756347.

23 El Nour, I. N. A., Peruffo, A. D., & Curioni, A. (1998). Characterization of sorghum kafirins in relation to their cross-linking behavior. Journal of Cereal Science, 28(2), 197-207. http://dx.doi.org/10.1006/jcrs.1998.0185.

24 Kumashiro, K. K., Kurano, T. L., Niemczura, W. P., Martino, M., & Tamburro, A. M. (2003). 13C CPMAS NMR Studies of the Elastin-Like Polypeptide (LGGVG)n. Biopolymers, 70(2), 221-226. http://dx.doi.org/10.1002/bip.10470. PMid:14517910.

25 Forato, L. A., Colnago, L. A., Garratt, R. C., & Lopes, M. A. (2000). Identification of free fatty acids in maize protein bodies and purified alpha zeins by 13C and 1H nuclear magnetic resonance. Biochimica et Biophysica Acta, 1543(1), 106-114. http://dx.doi.org/10.1016/S0167-4838(00)00190-4. PMid:11087946.

26 Bardet, M., Foray, M. F., Bourguignon, J., & Krajewski, P. (2001). Investigation of seeds with high-resolution solid-state 13C NMR. Magnetic Resonance in Chemistry, 39(12), 733-738. http://dx.doi.org/10.1002/mrc.958.

27 Forato, L. A., Yushmanov, V. E., & Colnago, L. A. (2004). Interaction of two prolamins with 1-13C Oleic Acid by 13C NMR. Biochemistry, 43(22), 7121-7126. http://dx.doi.org/10.1021/bi035562k. PMid:15170349.

28 Forato, L. A., Bernardes-Filho, R., & Colnago, L. A. (1998). Protein structure in KBr pellets by infrared spectroscopy. Analytical Biochemistry, 259(1), 136-141. http://dx.doi.org/10.1006/abio.1998.2599. PMid:9606154.

29 Hegland, M., & Anderssen, R. S. (2005). Resolution enhancement of spectra using. Differentiation. Inverse Problems, 21(3), 915-934. http://dx.doi.org/10.1088/0266-5611/21/3/008.

30 Kolodziejski, W., & Klinowski, J. (2002). Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chemical Reviews, 102(3), 613-628. http://dx.doi.org/10.1021/cr000060n. PMid:11890752.

62c5e4cea9539533671a16e5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections