Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210067
Polímeros: Ciência e Tecnologia
Original Article

Esterification of oleic acid employing sulfonated polystyrene and polysulfone membranes as catalysts

Ana Paula de Lima; Andressa Tirone Vieira; Bárbara Nascimento Aud; Antonio Carlos Ferreira Batista; Luís Carlos de Morais; Anízio Márcio de Faria; Rosana Maria Nascimento de Assunção; Daniel Pasquini

Downloads: 0
Views: 229

Abstract

In the present study, catalytic activity of dense, porous, electrospun membranes of polysulfone (PSF) and polysulfone with sulfonated polystyrene (PSF_PSS) have been evaluated in reactions of esterification of oleic acid with methanol, in times that varied from 10 to 480 minutes. Conversion to biodiesel has been confirmed by FTIR and quantified through gas chromatography. The results showed the catalysts used were effective in the esterification reaction studied and the PSF_PSS electrospun membrane has presented the best conversion to methyl oleate, reaching 70.5% in a 10-minute reaction and 95.8% in a 240-minute reaction, when methanol:oleic acid molar ratio of 10:1, 5% of catalyst and temperature of 100 °C were used. Considering the performance of solid catalysts described in literature, mainly related to reaction times and conversion of the process, this study reveals a promising feasibility of using electrospun membranes of PSF_PSS for developing a heterogeneous acid catalyst aimed to biodiesel synthesis.

Keywords

biodiesel, esterification, membranes, polysulfone, sulfonated polystyrene

References

1 Organization of the Petroleum Exporting Countries. (2019). World Oil Outlook 2040. Austria: OPEC Secretariat. Retrieved in 2021, August 31, from https://www.opec.org/opec_web/static_files_project/media/downloads/publications/WOO_2019.pdf

2 Ambat, I., Srivastava, V., & Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: a review. Renewable & Sustainable Energy Reviews, 90, 356-369. http://dx.doi.org/10.1016/j.rser.2018.03.069.

3 Chua, S. Y., Periasamy, L. A. P., Goh, C. M. H., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Walvekar, R., & Abdullah, E. C. (2020). Biodiesel synthesis using natural solid catalyst derived from biomass waste - A review. Journal of Industrial and Engineering Chemistry, 81, 41-60. http://dx.doi.org/10.1016/j.jiec.2019.09.022.

4 Balajii, M., & Niju, S. (2019). Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters, 17(4), 1447-1469. http://dx.doi.org/10.1007/s10311-019-00885-x.

5 Dechakhumwat, S., Hongmanorom, P., Thunyaratchatanon, C., Smith, S. M., Boonyuen, S., & Luengnaruemitchai, A. (2020). Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol. Renewable Energy, 148, 897-906. http://dx.doi.org/10.1016/j.renene.2019.10.174.

6 Clohessy, J., & Kwapinski, W. (2020). Carbon-based catalysts for biodiesel production: A review. Applied Sciences (Basel, Switzerland), 10(3), 918. http://dx.doi.org/10.3390/app10030918.

7 Corrêa, A. P. L., Bastos, R. R. C., Rocha, G. N., Fo., Zamian, J. R., & Conceição, L. R. V. (2020). Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction. RSC Advances, 10(34), 20245-20256. http://dx.doi.org/10.1039/D0RA03217D.

8 Liu, F., Ma, X., Li, H., Wang, Y., Cui, P., Guo, M., Yaxin, H., Lu, W., Zhou, S., & Yu, M. (2020). Dilute sulfonic acid post functionalized metal organic framework as a heterogeneous acid catalyst for esterification to produce biodiesel. Fuel, 266, 117149. http://dx.doi.org/10.1016/j.fuel.2020.117149.

9 Aguiar, V. M., Souza, A. L. F., Galdino, F. S., Silva, M. M. C., Teixeira, V. G., & Lachter, E. R. (2017). Sulfonated poly (divinylbenzene) and poly (styrene-divinylbenzene) as catalysts for esterification of fatty acids. Renewable Energy, 114(Pt B), 725-732. http://dx.doi.org/10.1016/j.renene.2017.07.084.

10 Booramurthy, V. K., Kasimani, R., Pandian, S., & Ragunathan, B. (2020). Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep fat. Environmental Science and Pollution Research International, 27(17), 20598-20605. http://dx.doi.org/10.1007/s11356-020-07984-1. PMid:32036538.

11 Pasa, T. L. B., Souza, G. K., Diório, A., Arroyo, P. A., & Pereira, N. C. (2020). Assessment of commercial acidic ion-exchange resin for ethyl esters synthesis from Acrocomia aculeata (Macaúba) crude oil. Renewable Energy, 146, 469-476. http://dx.doi.org/10.1016/j.renene.2019.06.025.

12 Al-Ani, A., Mordvinova, N. E., Lebedev, O. I., Khodakov, A. Y., & Zholobenko, V. (2020). Ion-exchanged zeolite P as a nanostructured catalyst for biodiesel production. Energy Reports, 5, 357-363. http://dx.doi.org/10.1016/j.egyr.2019.03.003.

13 Manikandan, K., & Cheralathan, K. K. (2017). Heteropoly acid supported on silicalite–1 possesing intracrystalline nanovoids prepared using biomass–an efficient and recyclable catalyst for esterification of levulinic acid. Applied Catalysis A, General, 547, 237-247. http://dx.doi.org/10.1016/j.apcata.2017.09.007.

14 Wang, Y.-T., Fang, Z., & Zhang, F. (2019). Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catalysis Today, 319, 172-181. http://dx.doi.org/10.1016/j.cattod.2018.06.041.

15 Sani, Y. M., Daud, W. M. A. W., & Abdul Aziz, A. R. (2014). Activity of solid acid catalysts for biodiesel production: a critical review. Applied Catalysis A, General, 470, 140-161. http://dx.doi.org/10.1016/j.apcata.2013.10.052.

16 Soldi, R. A., Oliveira, A. R. S., Ramos, L. P., & César-Oliveira, M. A. F. (2009). Soybean oil and beef tallow alcoholysis by acid heterogeneous catalysis. Applied Catalysis A, General, 361(1-2), 42-48. http://dx.doi.org/10.1016/j.apcata.2009.03.030.

17 Caetano, C. S., Guerreiro, L., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2009). Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Applied Catalysis A, General, 359(1-2), 41-46. http://dx.doi.org/10.1016/j.apcata.2009.02.028.

18 Grossi, C. V., Jardim, E. O., Araújo, M. H., Lago, R. M., & Silva, M. J. (2010). Sulfonated polystyrene: a catalyst with acid and superabsorbent properties for the esterification of fatty acids. Fuel, 89(1), 257-259. http://dx.doi.org/10.1016/j.fuel.2009.05.029.

19 Andrijanto, E., Dawson, E. A., & Brown, D. R. (2012). Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis. Applied Catalysis B: Environmental, 115-116, 261-268. http://dx.doi.org/10.1016/j.apcatb.2011.12.040.

20 Gomes, R., Bhanja, P., & Bhaumik, A. (2016). Sulfonated porous organic polymer as a highly efficient catalyst for the synthesis of biodiesel at room temperature. Journal of Molecular Catalysis A Chemical, 411, 110-116. http://dx.doi.org/10.1016/j.molcata.2015.10.016.

21 Pan, H., Liu, X., Zhang, H., Yang, K., Huang, S., & Yang, S. (2017). Multi-SO3H functionalized mesoporous polymeric acid catalystor biodiesel production and fructose-to biodiesel additive conversion. Renewable Energy, 107, 245-252. http://dx.doi.org/10.1016/j.renene.2017.02.009.

22 Megahed, A. A., Zoalfakar, S. H., Hassan, A. E. A., & Ali, A. A. (2018). A novel polystyrene/epoxy ultra‐fine hybrid fabric by electrospinning. Polymers for Advanced Technologies, 29(1), 517-527. http://dx.doi.org/10.1002/pat.4159.

23 Martins, C. R., Ruggeri, G., & De Paoli, M.-A. (2003). Synthesis in pilot plant scale and physical properties of sulfonated polystyrene. Journal of the Brazilian Chemical Society, 14(5), 797-802. http://dx.doi.org/10.1590/S0103-50532003000500015.

24 Saljoughi, E., Mousavi, S. M., & Hosseini, A. S. (2013). Polysulfone/Brij‐58 blend nanofiltration membranes: preparation, morphology and performance. Polymers for Advanced Technologies, 24(4), 383-390. http://dx.doi.org/10.1002/pat.3092.

25 Mahmoudian, M., Kochameshki, M. G., Mahdavi, H., Vahabi, H., & Enayati, M. (2018). Investigation of structure‐performance properties of a special type of polysulfone blended membranes. Polymers for Advanced Technologies, 29(10), 2690-2700. http://dx.doi.org/10.1002/pat.4395.

26 Venugopal, K., & Dharmalingam, S. (2012). Desalination efficiency of a novel bipolar membrane based on functionalized polysulfone. Desalination, 296, 37-45. http://dx.doi.org/10.1016/j.desal.2012.04.006.

27 Lima, A. P., Tirone, A. V., Batista, A. C. F., Morais, L. C., Souza, P. P., Duarte, M. V. F., & Pasquini, D. (2018). Produção, caracterização e utilização de membranas de poliestireno sulfonado e polissulfona como catalisadores na reação de esterificação do ácido oleico. Revista Virtual de Química, 10(1), 124-141. http://dx.doi.org/10.21577/1984-6835.20180012.

28 Wang, H.-H., Liu, L.-J., & Gong, S.-W. (2017). Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst. Journal of Fuel Chemistry and Technology, 45(3), 303-310. http://dx.doi.org/10.1016/S1872-5813(17)30018-X.

29 Rabelo, S. N., Ferraz, V. P., Oliveira, L. S., & Franca, A. S. (2015). FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. International Journal of Environmental Sciences and Development, 6(12), 964-969. http://dx.doi.org/10.7763/IJESD.2015.V6.730.

30 Ruschel, C. F. C., Huang, C. T., Samios, D., & Ferrao, M. F. (2014). Exploratory analysis applied to attenuated total reflectance fourier transform infrared (ATR-FTIR) of biodiesel/diesel blends. Quimica Nova, 37(5), 810-815. http://dx.doi.org/10.5935/0100-4042.20140130.
 

61eaef09a953954ac717ca02 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections