Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210066
Polímeros: Ciência e Tecnologia
Original Article

Cellulose nanocrystals into Poly(ethyl methacrylate) used for dental application

Andressa Leite; Hamille Viotto; Thais Nunes; Daniel Pasquini; Ana Pero

Downloads: 2
Views: 753

Abstract

Cellulose nanocrystals (CNCs) can improve the mechanical properties of dental resins. However, there is a deficiency of information about the behavior of physical properties of resins after this addition. The purpose was to evaluate the characterization and physical properties of hard chairside reline material modified with CNCs (0.25%, 0.5%, 0.75% or, 1.0%). Addition of CNCs at 0.5%, 0.75% and 1% increased Vickers hardness; 0.75% decrease surface free energy; 0.75% and 1% showed similar to control on the surface roughness. The simple and straightforward approach of adding CNCs, a renewable material, provides good potential for its future practical application as it has shown promise with increasing hardness. It means that the incorporation of CNCs into this denture reline resin could improve the abrasion resistance of this material, which is desirable in the long term.

 

 

Keywords

reline, acrylic resin, physical properties, nanocrystal cellulose

References

1 Matsumura, H., Tanoue, N., Kawasaki, K., & Atsuta, M. (2001). Clinical evaluation of a chemically cured hard denture relining material. Journal of Oral Rehabilitation, 28(7), 640-644. http://dx.doi.org/10.1046/j.1365-2842.2001.00701.x. PMid:11422696.

2 Machado, A. L., Breeding, L. C., & Puckett, A. D. (2006). Effect of microwave disinfection procedures on torsional bond strengths of two hard chairside denture reline materials. Journal of Prosthodontics, 15(6), 337-344. http://dx.doi.org/10.1111/j.1532-849X.2006.00132.x. PMid:17096805.

3 Arena, C. A., Evans, D. B., & Hilton, T. J. (1993). A comparison of bond strengths among chairside hard reline materials. The Journal of Prosthetic Dentistry, 70(2), 126-131. http://dx.doi.org/10.1016/0022-3913(93)90006-A. PMid:8371174.

4 Araujo, P. H. H., Sayer, C., Giudici, R., & Poco, J. G. R. (2002). Techniques for reducing residual monomer content in polymers: a review. Polymer Engineering and Science, 42(7), 1442-1468. http://dx.doi.org/10.1002/pen.11043.

5 Azzarri, M. J., Cortizo, M. S., & Alessandrini, J. L. (2003). Effect of the curing conditions on the properties of an acrylic denture base resin microwave-polymerised. Journal of Dentistry, 31(7), 463-468. http://dx.doi.org/10.1016/S0300-5712(03)00090-3. PMid:12927457.

6 Gad, M. M., Fouda, S. M., Al-Harbi, F. A., Napankangas, R., & Raustia, A. (2017). PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. International Journal of Nanomedicine, 12, 3801-3812. http://dx.doi.org/10.2147/IJN.S130722. PMid:28553115.

7 Sunasee, R., Hemraz, U. D., & Ckless, K. (2016). Cellulose nanocrystals: A versatile nanoplatform for emerging biomedical applications. Expert Opinion on Drug Delivery, 13(9), 1243-1256. http://dx.doi.org/10.1080/17425247.2016.1182491. PMid:27110733.

8 Zhang, J., Zhang, X., Li, M.-C., Dong, J., Lee, S., Cheng, H. N., Lei, T., & Wu, Q. (2019). Cellulose nanocrystal driven microphase separated nanocomposites: enhanced mechanical performance and nanostructured morphology. International Journal of Biological Macromolecules, 130, 685-694. http://dx.doi.org/10.1016/j.ijbiomac.2019.02.159. PMid:30826401.

9 Ni, X., Cheng, W., Huan, S., Wang, D., & Han, G. (2019). Electrospun cellulose nanocrystals/poly(methyl methacrylate) composite nanofibers: morphology, thermal and mechanical properties. Carbohydrate Polymers, 206, 29-37. http://dx.doi.org/10.1016/j.carbpol.2018.10.103. PMid:30553325.

10 Chen, S., Yang, J., Jia, Y.-G., Lu, B., & Ren, L. (2018). A study of 3d-printable reinforced composite resin: pmma modified with silver nanoparticles loaded cellulose nanocryst. Materials (Basel), 11(12), 2244. http://dx.doi.org/10.3390/ma11122444. PMid:30513868.

11 Huang, J., Liu, L., & Yao, J. (2011). Electrospinning of bombyx mori silk fibroin nanofiber mats reinforced by cellulose nanowhiskers. Fibers and Polymers, 12(8), 1002-1006. http://dx.doi.org/10.1007/s12221-011-1002-7.

12 Trigueiro, J. P. C., Silva, G. G., Pereira, F. V., & Lavall, R. L. (2014). Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. Journal of Colloid and Interface Science, 432, 214-220. http://dx.doi.org/10.1016/j.jcis.2014.07.001. PMid:25086396.

13 Banerjee, M., Sain, S., Mukhopadhyay, A., Sengupta, S., Kar, T., & Ray, D. (2014). Surface treatment of cellulose fibers with methylmethacrylate for enhanced properties of in situ polymerized pmma/cellulose composites. Journal of Applied Polymer Science, 131(2), n/a. http://dx.doi.org/10.1002/app.39808.

14 Yin, Y., Tian, X., Jiang, X., Wang, H., & Gao, W. (2016). Modification of cellulose nanocrystal via si-atrp of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydrate Polymers, 142, 206-212. http://dx.doi.org/10.1016/j.carbpol.2016.01.014. PMid:26917392.

15 Huang, T., Kuboyama, K., Fukuzumi, H., & Ougizawa, T. (2018). PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence. Cellulose (London, England), 25(4), 2393-2403. http://dx.doi.org/10.1007/s10570-018-1725-3.

16 Wang, Y., Hua, H., Li, W., Wang, R., Jiang, X., & Zhu, M. (2019). Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. Journal of Dentistry, 80, 23-29. http://dx.doi.org/10.1016/j.jdent.2018.11.002. PMid:30423354.

17 Moradian, M., Nosrat Abadi, M., Jafarpour, D., & Saadat, M. (2021). Effects of bacterial cellulose nanocrystals on the mechanical properties of resin-modified glass ionomer cements. European Journal of Dentistry, 15(2), 197-201. http://dx.doi.org/10.1055/s-0040-1717051. PMid:33126285.

18 Peres, B. U., Manso, A. P., Carvalho, L. D., Ko, F., Troczynski, T., Vidotti, H. A., & Carvalho, R. M. (2019). Experimental composites of polyacrilonitrile-electrospun nanofibers containing nanocrystal cellulose. Dental Materials, 35(11), e286-e297. http://dx.doi.org/10.1016/j.dental.2019.08.107. PMid:31551153.

19 Xu, J., Li, Y., Yu, T., & Cong, L. (2013). Reinforcement of denture base resin with short vegetable fiber. Dental Materials, 29(12), 1273-1279. http://dx.doi.org/10.1016/j.dental.2013.09.013. PMid:24144826.

20 Taczala, J., Sawicki, J., & Pietrasik, J. (2020). Chemical modification of cellulose microfibres to reinforce poly(methyl methacrylate) used for dental application. Materials (Basel), 13(17), 3807. http://dx.doi.org/10.3390/ma13173807. PMid:32872190.

21 Kawaguchi, T., Lassila, L. V. J., Baba, H., Tashiro, S., Hamanaka, I., Takahashi, Y., & Vallittu, P. K. (2020). Effect of cellulose nanofiber content on flexural properties of a model, thermoplastic, injection-molded, polymethyl methacrylate denture base material. Journal of the Mechanical Behavior of Biomedical Materials, 102, 103513. http://dx.doi.org/10.1016/j.jmbbm.2019.103513. PMid:31689576.

22 Rahaman Ali, A. A. A., John, J., Mani, S. A., & El-Seedi, H. R. (2020). Effect of thermal cycling on flexural properties of microcrystalline cellulose-reinforced denture base acrylic resins. Journal of Prosthodontics, 29(7), 611-616. http://dx.doi.org/10.1111/jopr.13018. PMid:30637856.

23 Yamazaki, Y., Ito, T., Ogawa, T., Hong, G., Yamada, Y., Hamada, T., & Sasaki, K. (2020). Potential of pure cellulose nanofibers as a denture base material. Journal of Oral Science, 63(1), 111-113. http://dx.doi.org/10.2334/josnusd.20-0245. PMid:33298639.

24 Silvério, H. A., Leite, A. R. P., da Silva, M. D. D., de Assunção, R. M. N., Pero, A. C., & Pasquini, D. (2021). Poly (ethyl methacrylate) composites reinforced with modified and unmodified cellulose nanocrystals and its application as a denture resin. Polymer Bulletin, 79(4), 2539-2557. http://dx.doi.org/10.1007/s00289-021-03621-0.

25 Flauzino, W. P., No., Putaux, J.-L., Mariano, M., Ogawa, Y., Otaguro, H., Pasquini, D., & Dufresne, A. (2016). Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Advances, 6(79), 76017-76027. http://dx.doi.org/10.1039/C6RA16295A.

26 Lombardo, C. E. L., Canevarolo, S. V., dos Santos Nunes Reis, J. M., Machado, A. L., Pavarina, A. C., Giampaolo, E. T., & Vergani, C. E. (2012). Effect of microwave irradiation and water storage on the viscoelastic properties of denture base and reline acrylic resins. Journal of the Mechanical Behavior of Biomedical Materials, 5(1), 53-61. http://dx.doi.org/10.1016/j.jmbbm.2011.09.011. PMid:22100079.

27 Rodriguez, L. S., Paleari, A. G., Giro, G., de Oliveira, N. M., Jr., Pero, A. C., & Compagnoni, M. A. (2013). Chemical characterization and flexural strength of a denture base acrylic resin with monomer 2-tert-butylaminoethyl methacrylate. Journal of Prosthodontics, 22(4), 292-297. http://dx.doi.org/10.1111/j.1532-849X.2012.00942.x. PMid:23106690.

28 de Menezes, A. J., Pasquini, D., Curvelo, A. A., & Gandini, A. (2007). Novel thermoplastic materials based on the outer-shell oxypropylation of corn starch granules. Biomacromolecules, 8(7), 2047-2050. http://dx.doi.org/10.1021/bm070389j. PMid:17580948.

29 Machado, A. L., Giampaolo, E. T., Vergani, C. E., Souza, J. F., & Jorge, J. H. (2011). Changes in roughness of denture base and reline materials by chemical disinfection or microwave irradiation: surface roughness of denture base and reline materials. Journal of Applied Oral Science, 19(5), 521-528. http://dx.doi.org/10.1590/S1678-77572011000500015. PMid:21986658.

30 Silva, I. S. V., Flauzino, W. P., No., Silvério, H. A., Pasquini, D., Andrade, M. Z., & Otaguro, H. (2017). Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (fragaria ananassa). Polymers for Advanced Technologies, 28(8), 1005-1012. http://dx.doi.org/10.1002/pat.3734.

31 Owens, D. K., & Wendt, R. C. (1969). Estimation of surface free energy of polymers. Journal of Applied Polymer Science, 13(8), 1741-1747. http://dx.doi.org/10.1002/app.1969.070130815.

32 Zoccolotti, J. O., Tasso, C. O., Arbelaez, M. I. A., Malavolta, I. F., Pereira, E. C. S., Esteves, C. S. G., & Jorge, J. H. (2018). Properties of an acrylic resin after immersion in antiseptic soaps: Low-cost, easy-access procedure for the prevention of denture stomatitis. PLoS One, 13(8), e0203187. http://dx.doi.org/10.1371/journal.pone.0203187. PMid:30161256.

33 Flauzino Neto, W. P., Silvério, H. A., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products, 42, 480-488. http://dx.doi.org/10.1016/j.indcrop.2012.06.041.

34 Bacali, C., Baldea, I., Moldovan, M., Carpa, R., Olteanu, D. E., Filip, G. A., Nastase, V., Lascu, L., Badea, M., Constantiniuc, M., & Badea, F. (2020). Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clinical Oral Investigations, 24(8), 2713-2725. http://dx.doi.org/10.1007/s00784-019-03133-2. PMid:31734793.

35 Emmanouil, J. K., Kavouras, P., & Kehagias, T. (2002). The effect of photo-activated glazes on the microhardness of acrylic baseplate resins. Journal of Dentistry, 30(1), 7-10. http://dx.doi.org/10.1016/S0300-5712(01)00052-5. PMid:11741729.

36 Azevedo, A., Machado, A. L., Vergani, C. E., Giampaolo, E. T., & Pavarina, A. C. (2005). Hardness of denture base and hard chair-side reline acrylic resins. Journal of Applied Oral Science, 13(3), 291-295. http://dx.doi.org/10.1590/S1678-77572005000300017. PMid:20878033.

37 Dunn, W. J., & Bush, A. C. (2002). A comparison of polymerization by light-emitting diode and halogen-based light-curing units. The Journal of the American Dental Association, 133(3), 335-341. http://dx.doi.org/10.14219/jada.archive.2002.0173. PMid:11934189.

38 Lee, S.-Y., Lai, Y.-L., & Hsu, T.-S. (2002). Influence of polymerization conditions on monomer elution and microhardness of autopolymerized polymethyl methacrylate resin. European Journal of Oral Sciences, 110(2), 179-183. http://dx.doi.org/10.1034/j.1600-0722.2002.11232.x. PMid:12013564.

39 Rawls, H. R. (2003). Dental polymers. In Anusavice, K. J. (Ed.), Phillips’ Science of Dental Materials (pp. 143-169). USA: Saunders Elsevier.

40 Shakir, S., Jalil, H., Khan, M., Qayum, B., & Qadeer, A. (2017). Causes and types of denture fractures. Pakistan Oral & Dental Journal, 37(4), 634-637.

41 Ajaj-ALKordy, N. M., & Alsaadi, M. H. (2014). Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins. The Saudi Dental Journal, 26(1), 15-18. http://dx.doi.org/10.1016/j.sdentj.2013.12.005. PMid:24532960.

42 Danesh, G., Hellak, T., Reinhardt, K.-J., Végh, A., Schäfer, E., & Lippold, C. (2012). Elution characteristics of residual monomers in different light- and auto-curing resins. Experimental and Toxicologic Pathology, 64(7-8), 867-872. http://dx.doi.org/10.1016/j.etp.2011.03.008. PMid:21530202.

43 Doǧan, A., Bek, B., Çevik, N. N., & Usanmaz, A. (1995). The effect of preparation conditions of acrylic denture base materials on the level of residual monomer, mechanical properties and water absorption. Journal of Dentistry, 23(5), 313-318. http://dx.doi.org/10.1016/0300-5712(94)00002-W. PMid:7560378.

44 Pavarina, A. C., Neppelenbroek, K. H., Guinesi, A. S., Vergani, C. E., Machado, A. L., & Giampaolo, E. T. (2005). Effect of microwave disinfection on the flexural strength of hard chairside reline resins. Journal of Dentistry, 33(9), 741-748. http://dx.doi.org/10.1016/j.jdent.2005.02.003. PMid:16199282.

45 Fatemi, F. S., Vojdani, M., & Khaledi, A. A. R. (2019). The effect of food-simulating agents on the bond strength of hard chairside reline materials to denture base resin. Journal of Prosthodontics, 28(1), e357-e363. http://dx.doi.org/10.1111/jopr.12905. PMid:29883009.

46 Qin, X., Xia, W., Sinko, R., & Keten, S. (2015). Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano Letters, 15(10), 6738-6744. http://dx.doi.org/10.1021/acs.nanolett.5b02588. PMid:26340693.

47 Voronova, M., Rubleva, N., Kochkina, N., Afineevskii, A., Zakharov, A., & Surov, O. (2018). Preparation and characterization of polyvinylpyrrolidone/cellulose nanocrystals composites. Nanomaterials (Basel, Switzerland), 8(12), 1011. http://dx.doi.org/10.3390/nano8121011. PMid:30563129.

48 Radford, D. R., Challacombe, S. J., & Walter, J. D. (1999). Denture plaque and adherence of candida albicans to denture-base materials in vivo and in vitro. Critical Reviews in Oral Biology and Medicine, 10(1), 99-116. http://dx.doi.org/10.1177/10454411990100010501. PMid:10759429.

49 Sipahi, C., Anil, N., & Bayramli, E. (2001). The effect of acquired salivary pellicle on the surface free energy and wettability of different denture base materials. Journal of Dentistry, 29(3), 197-204. http://dx.doi.org/10.1016/S0300-5712(01)00011-2. PMid:11306161.

50 Combe, E. C., Owen, B. A., & Hodges, J. S. (2004). A protocol for determining the surface free energy of dental materials. Dental Materials, 20(3), 262-268. http://dx.doi.org/10.1016/S0109-5641(03)00102-7. PMid:15209231.

51 de Avila, E. D., Avila-Campos, M. J., Vergani, C. E., Spolidório, D. M., & Mollo, F. A., Jr. (2016). Structural and quantitative analysis of a mature anaerobic biofilm on different implant abutment surfaces. The Journal of Prosthetic Dentistry, 115(4), 428-436. http://dx.doi.org/10.1016/j.prosdent.2015.09.016. PMid:26597465.

52 Al-Harbi, F. A., Abdel-Halim, M. S., Gad, M. M., Fouda, S. M., Baba, N. Z., AlRumaih, H. S., & Akhtar, S. (2019). Effect of nanodiamond addition on flexural strength, impact strength, and surface roughness of pmma denture base. Journal of Prosthodontics, 28(1), e417-e425. http://dx.doi.org/10.1111/jopr.12969. PMid:30353608.

53 Machado, A. L., Giampaolo, E. T., Vergani, C. E., Pavarina, A. C., Salles, D. S. L., & Jorge, J. H. (2012). Weight loss and changes in surface roughness of denture base and reline materials after simulated toothbrushing in vitro. Gerodontology, 29(2), e121-e127. http://dx.doi.org/10.1111/j.1741-2358.2010.00422.x. PMid:21410514.
 

62c5e53fa953953313146f55 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections