Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210049
Polímeros: Ciência e Tecnologia
Original Article

Effect of drying different inclusion plasters on the mechanical properties of thermoactivated acrylic resins

Tarcisio José de Arruda Paes-Junior; Natália Rivoli Rossi; Tayná Mendes Inácio de Carvalho; Vanessa Cruz Macedo; Michelle de Sá dos Santos Gomes; Leonardo Jiro Nomura Nakano; Cristiane Mayumi Inagati

Downloads: 0
Views: 717

Abstract

This article aimed to evaluate some mechanical and chemical properties of acrylic thermoactivated resins by microwave energy, varying the condition and type of plaster. The groups were divided into Lucitone and Vipi-Wave groups, with or without previous treatment (drying) of type III and IV plasters. It was evaluated flexural strength, microhardness, roughness, porosity, residual monomer, and also, time and temperature relationship of plaster and acrylic resin during the polymerization cycles. The data were analyzed using Analysis of Variance (ANOVA) 5%, followed by Tukey's test. The results showed that the drying of the plaster influenced the results and the groups with dry plaster maintained a higher temperature permanence. Therefore, changes in the water condition contained in the inclusion plaster showed effects on the final properties of the acrylic resin, which may be a technical indicator for laboratory procedures in the manufacture of prosthetic devices.

Keywords

acrylic resin, dental plaster, flexural strength, hardness, roughness

References

1 Al-Harbi, F. A., Abdel-Halim, M. S., Gad, M. M., Fouda, S. M., Baba, N. Z., AlRumaih, H. S., & Akhtar, S. (2019). Effect of nanodiamond addition on flexural strength, impact strength, and surface roughness of PMMA denture base. Journal of Prosthodontics, 28(1), e417-e425. http://dx.doi.org/10.1111/jopr.12969. PMid:30353608.

2 Baydas, S., Bayindir, F., & Akyil, M. S. (2003). Effect of processing variables (Different Compression Packing Processes and Investment Material Types) and time on the dimensional accuracy of polymethyl methacrylate denture bases. Dental Materials Journal, 22(2), 206-213. http://dx.doi.org/10.4012/dmj.22.206. PMid:12873123.

3 Karci, M., Demir, N., & Yazman, S. (2019). Evaluation of Flexural Strength of Different Denture Base Materials Reinforced with Different Nanoparticles. Journal of Prosthodontics, 28(5), 572-579. http://dx.doi.org/10.1111/jopr.12974. PMid:30298558.

4 Durkan, R., & Oyar, P. (2018). Comparison of mechanical and dynamic mechanical behaviors of different dental resins polymerized by different polymerization techniques. Nigerian Journal of Clinical Practice, 21(9), 1144-1149. http://dx.doi.org/10.4103/njcp.njcp_423_17. PMid:30156199.

5 Gad, M. M., Fouda, S. M., ArRejaie, A. S., & Al-Thobity, A. M. (2019). Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases. Journal of Prosthodontics, 28(4), 458-465. http://dx.doi.org/10.1111/jopr.12605. PMid:28543925.

6 Bural, C., Aktaş, E., Deniz, G., Ünlüçerçi, Y., Kızılcan, N., & Bayraktar, G. (2011). Effect of post-polymerization heat-treatments on degree of conversion, leaching residual MMA and in vitro cytotoxicity of autopolymerizing acrylic repair resin. Dental Materials, 27(11), 1135-1143. http://dx.doi.org/10.1016/j.dental.2011.08.007. PMid:21920593.

7 Silva, L. H., Tango, R. N., Kimpara, E. T., Saavedra, G. S. F. A., & Paes-Junior, T. J. A. (2011). Flexural strength and microhardness of a chemically activated acrylic resin after microwave energy treatment. Revista Gaucha de Odontologia, 59(2), 237-242.

8 Figuerôa, R. M. S., Conterno, B., Arrais, C. A. G., Sugio, C. Y. C., Urban, V. M., & Neppelenbroek, K. H. (2018). Porosity, water sorption and solubility of denture base acrylic resins polymerized conventionally or in microwave. Journal of Applied Oral Science, 26(0), e20170383. http://dx.doi.org/10.1590/1678-7757-2017-0383. PMid:29742260.

9 Melilli, D., Curró, G., Perna, A. M., & Cassaro, A. (2009). Cytotoxicity of four types of resins used for removable denture bases: in vitro comparative analysis. Minerva Stomatologica, 58(9), 425-434. PMid:19893467.

10 Paes-Junior, T. J. A., Carvalho, R. F., Cavalcanti, S. C. M., Saavedra, G. S. F. A., & Borges, A. L. S. (2013). Influence of plaster drying on the amount of residual monomer in heat-cured acrylic resins. Brazilian Journal of Oral Sciences, 12(2), 84-89. http://dx.doi.org/10.1590/S1677-32252013000200003.

11 Kim, T. H., Ahn, T. J., Enciso, R., & Knezevic, A. (2014). Effect of gypsum separating media on the appearance of stone cast surfaces. The Journal of Prosthetic Dentistry, 112(4), 1001-1005. http://dx.doi.org/10.1016/j.prosdent.2014.06.011. PMid:25134996.

12 Ali, I. L., Yunus, N., & Abu-Hassan, M. I. (2008). Hardness, flexural strength, and flexural modulus comparisons of three differently cured denture base systems. Journal of Prosthodontics, 17(7), 545-549. http://dx.doi.org/10.1111/j.1532-849X.2008.00357.x. PMid:18761582.

13 Canay, S., Hersek, N., Çiftçi, Y., & Akça, K. (1999). Comparision of diametral tensile strength of microwave and oven-dried investment materials. The Journal of Prosthetic Dentistry, 82(3), 286-290. http://dx.doi.org/10.1016/S0022-3913(99)70082-X. PMid:10479254.

14 Rodriguez, L. S., Paleari, A. G., Giro, G., Oliveira, N. M., Jr., Pero, A. C., & Compagnoni, M. A. (2013). Chemical characterization and flexural strength of a denture base acrylic resin with Monomer 2-Tert-Butylaminoethyl Methacrylate. Journal of Prosthodontics, 22(4), 292-297. http://dx.doi.org/10.1111/j.1532-849X.2012.00942.x. PMid:23106690.

15 Türkcan, I., Nalbant, A. D., Bat, E., & Akca, G. (2018). Examination of 2-methacryloyloxyethyl phosphorylcholine polymer coated acrylic resin denture base material: surface characteristics and candida albicans adhesion. Journal of Materials Science. Materials in Medicine, 29(7), 107. http://dx.doi.org/10.1007/s10856-018-6116-7. PMid:29971499.

16 Savirmath, A., & Mishra, V. (2016). A comparative evaluation of the linear dimensional changes of two different commercially available heat cure acrylic resins during three different cooling regimens. Journal of Clinical and Diagnostic Research : JCDR, 10(11), 50-54. http://dx.doi.org/10.7860/JCDR/2016/22066.8903. PMid:28050504.

17 Kimpara, E. T., Silva, L. H., Costa, C. B., Borges, A. L. S., Tango, R. N., & Paes-Junior, T. J. A. (2009). Acrylic resin for complete denture: effect of polymerization cycles at residual monomer released and porosity evidence.Revista da Faculdade de Odontologia: UPF,14(1), 37-41.

18 Neisser, M. P., Hilgert, E., Cavalcanti, B. N., Barros, E. A., & Magalhães, O., No. (2005). Thermal curves of acrylic resins in microwave curing. Brazilian Dental Science, 8(2), 25-30. http://dx.doi.org/10.14295/bds.2005.v8i2.385.

19 Rizzatti-Barbosa, C. M., & Ribeiro-Dasilva, M. C. (2009). Influence of double flask investing and microwave heating on the superficial porosity, surface roughness, and knoop hardness of acrylic resin. Journal of Prosthodontics, 18(6), 503-506. http://dx.doi.org/10.1111/j.1532-849X.2009.00469.x. PMid:19432756.

20 Urban, V. M., Machado, A. L., Oliveira, R. V., Vergani, C. E., Pavarina, A. C., & Cass, Q. B. (2007). Residual monomer of reline acrylic resins: effect of water-bath and microwave post-polymerization treatments. Dental Materials, 23(3), 363-368. http://dx.doi.org/10.1016/j.dental.2006.01.021. PMid:16620950.
 

61eaed48a953954a3f429803 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections