Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210044
Polímeros: Ciência e Tecnologia
Original Article

Effects of gamma radiation on nanocomposite films of polycaprolactone with modified MCM-48

Marcos Vinícius Paula; Leandro Araújo de Azevedo; Ivo Diego de Lima Silva; Glória Maria Vinhas; Severino Alves Junior

Downloads: 1
Views: 539

Abstract

The aim of this investigation was to assess the effects of gamma radiation on nanocomposite films (NC films) formed by PCL (polycaprolactone) with MCM-48 nanoparticles (PCL/MCM-48) and PCL with MCM-48 NPs modified with (3-aminopropyl)triethoxysilane (APTES) (PCL/MCM-48-NH2). The nanocomposite films were obtained using the solvent casting method. After preparing the films, they were irradiated at 25 kGy in the presence of air and analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), transmission electronic microscopy (TEM), as well as for their mechanical properties. The exposure of NC films to gamma radiation at 25 kGy did not cause major changes in either thermal or mechanical properties such as tensile strength and modulus of elasticity. The results revealed that gamma radiation was a successful choice for the sterilization of these materials.

Keywords

gamma radiation, MCM-48, mechanical properties, polycaprolactone

References

1 Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484-3504. http://dx.doi.org/10.1039/b820162p. PMid:20449064.

2 Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002.

3 Pêgo, A. P., Poot, A. A., Grijpma, D. W., & Feijen, J. (2001). Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. Journal of Biomaterials Science. Polymer Edition, 12(1), 35-53. http://dx.doi.org/10.1163/156856201744434. PMid:11334188.

4 Moraczewski, K., Stepczyńska, M., Malinowski, R., Rytlewski, P., Jagodziński, B., & Zenkiewicz, M. (2016). Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers. Applied Surface Science, 377, 228-237. http://dx.doi.org/10.1016/j.apsusc.2016.03.171.

5 Bhagabati, P., Das, D., & Katiyar, V. (2021). Bamboo-flour-filled cost-effective poly(e-caprolactone) biocomposites: a potential contender for flexible cryo-packaging applications. Materials Advances, 2(1), 280-291. http://dx.doi.org/10.1039/D0MA00517G.

6 Carvalho, J. R. G., Conde, G., Antonioli, M. L., Dias, P. P., Vasconcelos, R. O., Taboga, S. R., Canola, P. A., Chinelatto, M. A., Pereira, G. T., & Ferraz, G. C. (2020). Biocompatibility and biodegradation of poly(lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polymer Journal, 52(6), 629-643. http://dx.doi.org/10.1038/s41428-020-0308-y.

7 Stewart, S. A., Domínguez-Robles, J., McIlorum, V. J., Gonzalez, Z., Utomo, E., Mancuso, E., Lamprou, D. A., Donnelly, R. F., & Larrañeta, E. (2020). Poly(caprolactone)-based coatings on 3D-printed biodegradable implants: a novel strategy to prolong delivery of hydrophilic drugs. Molecular Pharmaceutics, 17(9), 3487-3500. http://dx.doi.org/10.1021/acs.molpharmaceut.0c00515. PMid:32672976.

8 Abudula, T., Gauthaman, K., Mostafavi, A., Alshahrie, A., Salah, N., Morganti, P., Chianese, A., Tamayol, A., & Memic, A. (2020). Sustainable drug release from polycaprolactone coated chitin lignin gel fibrous scaffolds. Scientific Reports, 10(1), 20428. http://dx.doi.org/10.1038/s41598-020-76971-w. PMid:33235239.

9 Zimmerling, A., Yazdanpanah, Z., Cooper, D. M. L., Johnston, J. D., & Chen, X. (2021). 3D printing PCL / nHA bone scaffolds: exploring the influence of material synthesis techniques. Biomaterials Research, 25(1), 3. http://dx.doi.org/10.1186/s40824-021-00204-y. PMid:33499957.

10 Gutiérrez, T. J., Mendieta, J. R., & Ortega-Toro, R. (2021). In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocolloids, 111, 106255. http://dx.doi.org/10.1016/j.foodhyd.2020.106255.

11 Shi, K., Jing, J., Song, L., Su, T., & Wang, Z. (2020). Enzymatic hydrolysis of polyester: degradation of poly(ε- caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. International Journal of Biological Macromolecules, 144, 183-189. http://dx.doi.org/10.1016/j.ijbiomac.2019.12.105. PMid:31843602.

12 Lopez-Figueras, L., Navascues, N., & Irusta, S. (2017). Polycaprolactone/mesoporous silica MCM-41 composites prepared by in situ polymerization. Particuology, 30, 135-143. http://dx.doi.org/10.1016/j.partic.2016.05.005.

13 Elen, K., Murariu, M., Peeters, R., Dubois, P., Mullens, J., Hardy, A., & Van Bael, M. K. (2012). Towards high-performance biopackaging: barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polymers for Advanced Technologies, 23(10), 1422-1428. http://dx.doi.org/10.1002/pat.2062.

14 Gautam, S., Sharma, C., Purohit, S. D., Singh, H., Dinda, A. K., Potdar, P. D., Chou, C., & Mishra, N. C. (2021). Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Materials Science and Engineering C, 119, 111588. http://dx.doi.org/10.1016/j.msec.2020.111588. PMid:33321633.

15 Mallakpour, S., & Madani, M. (2015). A review of current coupling agents for modification of metal oxide nanoparticles. Progress in Organic Coatings, 86, 194-207. http://dx.doi.org/10.1016/j.porgcoat.2015.05.023.

16 Griffin, M., Nayyer, L., Butler, P. E., Palgrave, R. G., Seifalian, A. M., & Kalaskar, D. M. (2016). Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions. Nanomedicine; Nanotechnology, Biology, and Medicine, 12(6), 1725-1733. http://dx.doi.org/10.1016/j.nano.2016.02.011. PMid:27013128.

17 Guo, Y., Yan, L., Zeng, Z., Chen, L., Ma, M., Luo, R., Bian, J., Lin, H., & Chen, D. (2020). PU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi-walled carbon nanotubes nanofillers. Polymer Engineering and Science, 60(6), 1118-1128. http://dx.doi.org/10.1002/pen.25365.

18 Mallakpour, S., Abdolmaleki, A., & Moosavi, S. E. (2015). A green route for the synthesis of alanine-based Poly (amide-imide) nanocomposites reinforced with the modified ZnO by Poly (vinyl alcohol) as a Biocompatible Coupling Agent. Polymer-Plastics Technology and Engineering, 54(14), 1448-1456. http://dx.doi.org/10.1080/03602559.2014.996907.

19 Schumacher, K., Grün, M., & Unger, K. K. (1999). Novel synthesis of spherical MCM-48. Microporous and Mesoporous Materials, 27(2-3), 201-206. http://dx.doi.org/10.1016/S1387-1811(98)00254-6.

20 Zhang, F., Lee, D., & Pinnavaia, T. J. (2010). PMMA/mesoporous silica nanocomposites: effect of framework structure and pore size on thermomechanical properties. Polymer Chemistry, 1(1), 107-113. http://dx.doi.org/10.1039/B9PY00232D.

21 Kim, T., Chung, P., & Lin, V. S. (2010). Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chemistry of Materials, 22(17), 5093-5104. http://dx.doi.org/10.1021/cm1017344.

22 Shen, J. L., Lee, Y. C., Liu, Y. L., Yu, C. C., Cheng, P. W., & Cheng, C. F. (2003). Photoluminescence sites on MCM-48. Microporous and Mesoporous Materials, 64(1-3), 135-143. http://dx.doi.org/10.1016/j.micromeso.2003.08.001.

23 Schumacher, K., Ravikovitch, P. I., Chesne, A., Neimark, A. V., & Unger, K. K. (2000). Characterization of MCM-48 Materials. Langmuir, 16(10), 4648-4654. http://dx.doi.org/10.1021/la991595i.

24 Mallakpour, S., & Khani, Z. (2018). Surface modified SiO2 nanoparticles by thiamine and ultrasonication synthesis of PCL/SiO2-VB1 NCs: Morphology, thermal, mechanical and bioactivity investigations. Ultrasonics Sonochemistry, 41, 527-537. http://dx.doi.org/10.1016/j.ultsonch.2017.10.015. PMid:29137784.

25 Coombes, A. G. A., Rizzi, S. C., Williamson, M., Barralet, J. E., Downes, S., & Wallace, W. A. (2004). Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials, 25(2), 315-325. http://dx.doi.org/10.1016/S0142-9612(03)00535-0. PMid:14585719.

26 Yang, L., Li, J., Jin, Y., Li, M., & Gu, Z. (2015). In vitro enzymatic degradation of the cross-linked poly(ε-caprolactone) implants. Polymer Degradation & Stability, 112, 10-19. http://dx.doi.org/10.1016/j.polymdegradstab.2014.12.008.

27 Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H., Oh, J., Akaike, T., & Cho, C. (2003). A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24(5), 801-808. http://dx.doi.org/10.1016/S0142-9612(02)00370-8. PMid:12485798.

28 Rešček, A., Katančić, Z., Krehula, L. K., Ščetar, M., Hrnjak-Murgić, Z., & Galić, K. (2018). Development of double-layered PE/PCL films for food packaging modified with zeolite and magnetite nanoparticles. Advances in Polymer Technology, 37(3), 837-842. http://dx.doi.org/10.1002/adv.21727.

29 Bosworth, L. A., Gibb, A., & Downes, S. (2012). Gamma irradiation of electrospun poly(ε-caprolactone) fibers affects material properties but not cell response. Journal of Polymer Science. Part B, Polymer Physics, 50(12), 870-876. http://dx.doi.org/10.1002/polb.23072.

30 Augustine, R., Saha, A., Jayachandran, V. P., Thomas, S., & Kalarikkal, N. (2015). Dose dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(10), 526-533. http://dx.doi.org/10.1080/00914037.2014.977900.

31 Aquino, K. A. S. (2012). Sterilization by gamma irradiation. In F. Adrovic (Ed.), Gamma irradiation (pp. 171-206). Croatia: Intech. http://dx.doi.org/10.5772/34901.

32 Zhang, L., Yu, C., Zhao, W., Hua, Z., Chen, H., Li, L., & Shi, J. (2007). Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption. Journal of Non-Crystalline Solids, 353(44-46), 4055-4061. http://dx.doi.org/10.1016/j.jnoncrysol.2007.06.018.

33 Koenig, M. F., & Huang, S. J. (1995). Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer, 36(9), 1877-1882. http://dx.doi.org/10.1016/0032-3861(95)90934-T.

34 Nawrocki, J. (1997). The silanol group and its role in liquid chromatography. Journal of Chromatography. A, 779(1-2), 29-71. http://dx.doi.org/10.1016/S0021-9673(97)00479-2.

35 Bahrami, Z., Badiei, A., & Atyabi, F. (2014). Surface functionalization of SBA-15 nanorods for anticancer drug delivery. Chemical Engineering Research & Design, 92(7), 1296-1303. http://dx.doi.org/10.1016/j.cherd.2013.11.007.

36 Mallakpour, S., & Nouruzi, N. (2016). Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer, 89, 94-101. http://dx.doi.org/10.1016/j.polymer.2016.02.038.

37 Kornacka, E. M. (2017). Radiation-induced oxidation of polymers. In Y. Sun, & A. Chmielewski (Eds.), Applications of ionizing radiation in materials processing (pp. 183-192). Warszawa: Institute of Nuclear Chemistry and Technology, Erasmus.

38 Lyu, J. S., Lee, J., & Han, J. (2019). Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), 20236. http://dx.doi.org/10.1038/s41598-019-56757-5. PMid:31882928.

39 Solovyov, L. A., Belousov, O. V., Dinnebier, R. E., Shmakov, A. N., & Kirik, S. D. (2007). X-ray diffraction structure analysis of MCM-48 mesoporous silica. The Journal of Physical Chemistry B, 109(8), 3233-3237. http://dx.doi.org/10.1021/jp068521h. PMid:16851346.

40 Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 21(3), 347. http://dx.doi.org/10.1007/s10965-013-0347-6.

41 Horakova, J., Klicova, M., Erben, J., Klapstova, A., Novotny, V., Behalek, L., & Chvojka, J. (2020). Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone. ACS Omega, 5(15), 8885-8892. http://dx.doi.org/10.1021/acsomega.0c00503. PMid:32337451.

42 Augustine, R., Kalarikkal, N., & Thomas, S. (2016). Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(1), 28-37. http://dx.doi.org/10.1080/00914037.2015.1055628.

43 Kostakova, E. K., Meszaros, L., Maskova, G., Blazkova, L., Turcsan, T., & Lukas, D. (2017). Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study. Journal of Nanomaterials, 2017, 8952390. http://dx.doi.org/10.1155/2017/8952390.

44 Foggia, M., Corda, U., Plescia, E., Taddei, P., & Torreggiani, A. (2010). Effects of sterilisation by high-energy radiation on biomedical poly-(e-caprolactone)/hydroxyapatite composites. Journal of Materials Science. Materials in Medicine, 21(6), 1789-1797. http://dx.doi.org/10.1007/s10856-010-4046-0. PMid:20224934.

45 Leonés, A., Mujica-Garcia, A., Arrieta, M. P., Salaris, V., Lopez, D., Kenny, J. M., & Peponi, L. (2020). Organic and inorganic PCL-based elesctospun fibers. Polymers, 12(6), 1325. http://dx.doi.org/10.3390/polym12061325. PMid:32532052.
 

61eaebb5a9539549992a18e4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections