Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210039
Polímeros: Ciência e Tecnologia
Original Article

Silane-coupled kenaf fiber filled thermoplastic elastomer based on recycled high density polyethylene/natural rubber blends

Cao Xuan Viet; Hanafi Ismail; Abdulhakim Masa; Nabil Hayeemasae

Downloads: 0
Views: 701

Abstract

A silane coupling agent, namely γ-aminopropyltriethoxysilane (APS), was used to modify kenaf powder (KP). It was then used as filler in a thermoplastic elastomer (TPE) based on Recycled High Density Polyethylene/Natural Rubber Blends (rHDPE/NR). The attachment of silane onto KP was verified by Fourier Transform Infrared Spectroscopy (FTIR), while the performance of the TPE was assessed in terms of mechanical and thermal properties. The results revealed that specific functional groups of APS were efficiently grafted onto the KP. Tensile strength was improved by the modification with silane and this also affected Young’s modulus of the TPE. Also, improved thermal stability was confirmed by thermogravimetric analysis (TGA), as the degradation temperature increased upon inclusion of silane. These effects are attributed to improved compatibility of the KP and rHDPE/NR blend. Such compatibilizing effect was confirmed by Differential Scanning Calorimetry (DSC) that indicated significantly increased crystallinity after the modification with silane.

 

Keywords

recycled polyethylene, natural rubber, Kenaf powder, silane coupling agent

References

1 Favaro, S., Ganzerli, T., de Carvalho Neto, A., Da Silva, O., & Radovanovic, E. (2010). Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites. Express Polymer Letters, 4(8), 465-473. http://dx.doi.org/10.3144/expresspolymlett.2010.59.

2 Yam, K. L., Gogoi, B. K., Lai, C. C., & Selke, S. E. (1990). Composites from compounding wood fibers with recycled high density polyethylene. Polymer Engineering and Science, 30(11), 693-699. http://dx.doi.org/10.1002/pen.760301109.

3 Burgoa, A., Hernandez, R., & Vilas, J. L. (2020). New ways to improve the damping properties in high‐performance thermoplastic vulcanizates. Polymer International, 69(5), 467-475. http://dx.doi.org/10.1002/pi.5977.

4 Huang, J., Fan, J., Cao, L., Xu, C., & Chen, Y. (2020). A novel strategy to construct co-continuous PLA/NBR thermoplastic vulcanizates: metal-ligand coordination-induced dynamic vulcanization, balanced stiffness-toughness and shape memory effect. Chemical Engineering Journal, 385, 123828. http://dx.doi.org/10.1016/j.cej.2019.123828.

5 Zheng, M., Zhang, S., Chen, Y., Wu, Q., Li, Q., & Wang, S. (2020). Structure evolution of bio-based PLA/ENR thermoplastic vulcanizates during dynamic vulcanization processing. Polymer Testing, 82, 106324. http://dx.doi.org/10.1016/j.polymertesting.2020.106324.

6 Abdel-Hamid, S. M. S., Al-Qabandi, O. A., Elminshawy, N. A. S., Bassyouni, M., Zoromba, M. S., Abdel-Aziz, M. H., & Mira, H. (2019). Fabrication and characterization of microcellular polyurethane sisal biocomposites. Molecules, 24(24), 4585. http://dx.doi.org/10.3390/molecules24244585. PMid:31847377.

7 Verheyen, S., Blaton, N., Kinget, R., & Kim, H.-S. (2004). Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. Journal of Thermal Analysis and Calorimetry, 76(2), 395-404. http://dx.doi.org/10.1023/B:JTAN.0000028020.02657.9b.

8 Ismail, M. R., Yassen, A. A. M., & Afify, M. S. (2011). Mechanical properties of rice straw fiber-reinforced polymer composites. Fibers and Polymers, 12(5), 648-656. http://dx.doi.org/10.1007/s12221-011-0648-5.

9 Schneider, J. P., Myers, G. E., Clemons, C. M., & English, B. W. (1995). Biofibers as reinforcing fillers in thermoplastic composites. Journal of Vinyl and Additive Technology, 1(2), 103-108. http://dx.doi.org/10.1002/vnl.730010212.n.

10 Webber, C. L., 3rd, Whitworth, J., & Dole, J. (1999). Kenaf (Hibiscus cannabinus L.) core as a containerized growth medium component. Industrial Crops and Products, 10(2), 97-105. http://dx.doi.org/10.1016/S0926-6690(99)00014-X.

11 Raj, R. G., Kokta, B. V., Dembele, F., & Sanschagrain, B. (1989). Compounding of cellulose fibers with polypropylene: effect of fiber treatment on dispersion in the polymer matirx. Journal of Applied Polymer Science, 38(11), 1987-1996. http://dx.doi.org/10.1002/app.1989.070381103.

12 Abdelmouleh, M., Boufi, S., Belgacem, M. N., & Dufresne, A. (2007). Short naturalfibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Composites Science and Technology, 67(7-8), 1627-1639. http://dx.doi.org/10.1016/j.compscitech.2006.07.003.

13 Kim, T.-W., Lee, S.-Y., Chun, S.-J., Doh, G.-H., & Paik, K.-H. (2011). Effect of silane coupling on the fundamental properties of wood flour reinforced polypropylene composites. Journal of Composite Materials, 45(15), 1595-1605. http://dx.doi.org/10.1177/0021998310385589.

14 Tanrattanakul, V., & Udomkichdecha, W. (2001). Development of novel elastomeric blends containing natural rubber and ultra‐low‐density polyethylene. Journal of Applied Polymer Science, 82(3), 650-660. http://dx.doi.org/10.1002/app.1893.

15 Alix, S., Philippe, E., Bessadok, A., Lebrun, L., Morvan, C., & Marais, S. (2009). Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresource Technology, 100(20), 4742-4749. http://dx.doi.org/10.1016/j.biortech.2009.04.067. PMid:19477120.

16 Pereira, P. H. F., Rosa, M. F., Cioffi, M. O. H., Benini, K. C. C. C., Milanese, A. C., Voorwald, H. J. C., & Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: a review. Polímeros: Ciência e Tecnologia, 25(1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722.

17 Pretsch, E., Bühlmann, P., & Badertscher, M. (2009). Structure determination of organic compounds: tables of spectral data. Germany: Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-93810-1.

18 Demjén, Z., Pukánszky, B., & Nagy, J., Jr. (1999). Possible coupling reactions of functional silanes and polypropylene. Polymer, 40(7), 1763-1773. http://dx.doi.org/10.1016/S0032-3861(98)00396-6.

19 Natarajan, S., Rathanasamy, R., Palaniappan, S. K., Velayudham, S., Subburamamurthy, H. B., & Pal, K. (2020). Comparison of MA-g-PP effectiveness through mechanical performance of functionalised graphene reinforced polypropylene. Polímeros: Ciência e Tecnologia, 30(3), e2020035. http://dx.doi.org/10.1590/0104-1428.05620.

20 Cui, Y., Lee, S., Noruziaan, B., Cheung, M., & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites. Part A, Applied Science and Manufacturing, 39(4), 655-661. http://dx.doi.org/10.1016/j.compositesa.2007.10.017.

21 Castellano, M., Gandini, A., Fabbri, P., & Belgacem, M. N. (2004). Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? Journal of Colloid and Interface Science, 273(2), 505-511. http://dx.doi.org/10.1016/j.jcis.2003.09.044. PMid:15082387.

22 Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: a review. Composites. Part A, Applied Science and Manufacturing, 41(7), 806-819. http://dx.doi.org/10.1016/j.compositesa.2010.03.005.

23 Grubbström, G., Holmgren, A., & Oksman, K. (2010). Silane-crosslinking of recycled low-density polyethylene/wood composites. Composites. Part A, Applied Science and Manufacturing, 41(5), 678-683. http://dx.doi.org/10.1016/j.compositesa.2010.01.018.

24 Oksman, K., & Clemons, C. (1998). Mechanical properties and morphology of impact modified polypropylene–wood flour composites. Journal of Applied Polymer Science, 67(9), 1503-1513. http://dx.doi.org/10.1002/(SICI)1097-4628(19980228)67:9<1503::AID-APP1>3.0.CO;2-H.

25 Tserki, V., Zafeiropoulos, N. E., Simon, F., & Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites. Part A, Applied Science and Manufacturing, 36(8), 1110-1118. http://dx.doi.org/10.1016/j.compositesa.2005.01.004.

26 Shebani, A. N., van Reenen, A. J., & Meincken, M. (2008). The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta, 471(1-2), 43-50. http://dx.doi.org/10.1016/j.tca.2008.02.020.

27 Marcovich, N. E., & Villar, M. A. (2003). Thermal and mechanical characterization of linear low-density polyethylene/wood flour composites. Journal of Applied Polymer Science, 90(10), 2775-2784. http://dx.doi.org/10.1002/app.12934.

28 Bouza, R., Lasagabaster, A., Abad, M. J., & Barral, L. (2008). Effects of vinyltrimethoxy silane on thermal properties and dynamic mechanical properties of polypropylene-wood flour composites. Journal of Applied Polymer Science, 109(2), 1197-1204. http://dx.doi.org/10.1002/app.28159.

29 Khonakdar, H. A., Morshedian, J., Wagenknecht, U., & Jafari, S. H. (2003). An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer, 44(15), 4301-4309. http://dx.doi.org/10.1016/S0032-3861(03)00363-X.
 

61a623a9a953950c3453b363 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections