Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Epoxy hybrid composites reinforced with nanodiamond-silica for abrasive applications

Marcos Antônio Barcelos; Mariana Valinhos Barcelos; Gabriel Rodrigues de Almeida Neto; Antônio Cesar Bozzi; Rubén Jesus Sánchez Rodriguez

Downloads: 0
Views: 499


In this work, a ternary composite of epoxy filled with ND and MS was produced for abrasive applications. Surfactants (oleic acid (OA), sodium dodecyl sulfate (SDS) and Triton TX-100 (TX-100)) were used to improve the particle dispersion and, consequently, the composite properties. The elastic modulus increased up to 76% for the sample with 1 wt% ND and 5 wt% ND using TX-100 (1ND5MS-TX100). Regardless of the filler concentration, the particles did not modify the thermal degradation behavior of the epoxy. Thermogravimetric (TGA) and dynamic mechanical (DMA) analyses suggest a strong particle-matrix interface, also evidenced in scanning electron microscope (SEM) micrographs. The composites presented superior tribological performance. 1ND5MS-TX100 presented a wear rate of 2.19 x 10-3 mm3.Nm-1, 61.3% lower than the epoxy. Also, all composites significantly reduced the roughness of the marble, being proportional to the abrasives concentration. Overall, composites with TX-100 presented improved wear behavior.


epoxy, nanocomposites, nanodiamond, silica, surfactant, thermoset


1 Elkarmoty, M., Bonduà, S., & Bruno, R. (2020). A 3D optimization algorithm for sustainable cutting of slabs from ornamental stone blocks. Resources Policy, 65, 101533. http://dx.doi.org/10.1016/j.resourpol.2019.101533.

2 Associação Brasileira da Indústria de Rochas Ornamentais – ABIROCHAS. (2019). Balanço das exportações e importações brasileiras de rochas ornamentais em 2019. Brasília: ABIROCHAS. Retrieved in 2021, October 12, from https://abirochas.com.br/wp-content/uploads/2020/06/Informe-01_2020-Balanço-2019.pdf

3 Lee, G. Y., Dharan, C. K., & Ritchie, R. O. (2002). A physically-based abrasive wear model for composite materials. Wear, 252(3-4), 322-331. http://dx.doi.org/10.1016/S0043-1648(01)00896-1.

4 Hutchings, I., & Shipway, P. (2017). Tribology friction and wear of engineering materials. United Kingdom: Butterworth-Heinemann.

5 Móczó, J., & Pukánszky, B. (2008). Polymer micro and nanocomposites: Structure, interactions, properties. Journal of Industrial and Engineering Chemistry, 14(5), 535-563. http://dx.doi.org/10.1016/j.jiec.2008.06.011.

6 Ayatollahi, M. R., Alishahi, E., Doagou-R, S., & Shadlou, S. (2012). Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Composites. Part B, Engineering, 43(8), 3425-3430. http://dx.doi.org/10.1016/j.compositesb.2012.01.022.

7 Zhang, M. Q., Rong, M. Z., Yu, S. L., Wetzel, B., & Friedrich, K. (2002). Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear, 253(9-10), 1086-1093. http://dx.doi.org/10.1016/S0043-1648(02)00252-1.

8 Neitzel, I., Mochalin, V., Bares, J. A., Carpick, R. W., Erdemir, A., & Gogotsi, Y. (2012). Tribological properties of nanodiamond-epoxy composites. Tribology Letters, 47(2), 195-202. http://dx.doi.org/10.1007/s11249-012-9978-8.

9 Neitzel, I., Mochalin, V., Knoke, I., Palmese, G. R., & Gogotsi, Y. (2011). Mechanical properties of epoxy composites with high contents of nanodiamond. Composites Science and Technology, 71(5), 710-716. http://dx.doi.org/10.1016/j.compscitech.2011.01.016.

10 Veena, M. G., Renukappa, N. M., Suresha, B., & Shivakumar, K. N. (2011). Tribological and electrical properties of silica-filled epoxy nanocomposites. Polymer Composites, 32(12), 2038-2050. http://dx.doi.org/10.1002/pc.21221.

11 Kang, Y., Chen, X., Song, S., Yu, L., & Zhang, P. (2012). Friction and wear behavior of nanosilica-filled epoxy resin composite coatings. Applied Surface Science, 258(17), 6384-6390. http://dx.doi.org/10.1016/j.apsusc.2012.03.046.

12 Xing, X. S., & Li, R. K. Y. (2004). Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles. Wear, 256(1-2), 21-26. http://dx.doi.org/10.1016/S0043-1648(03)00220-5.

13 Amaral, C. R., Rodriguez, R. J. S., Bessa, M. L. T., Cândido, V. S., & Monteiro, S. N. (2014). Mechanical properties of DGEBA/TEPA modified epoxy resin. Materials Science Forum, 775-776, 588-592. http://dx.doi.org/10.4028/www.scientific.net/MSF.775-776.588.

14 Stachowiak, G. W., Batchelor, A. W., & Stachowiak, G. B. (2004). Experimental methods in tribology. Netherlands: Elsevier.

15 Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133-145. http://dx.doi.org/10.1016/S0924-0136(02)00060-2.

16 Kovářík, T., Bělský, P., Rieger, D., Ilavsky, J., Jandová, V., Maas, M., Sutta, P., Pola, M., & Medlín, R. (2020). Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods. Journal of Nanoparticle Research, 22(2), 34. http://dx.doi.org/10.1007/s11051-020-4755-3.

17 Moosa, A. A., Kubba, F., Raad, M., & Abadi, A. R. S. (2016). Mechanical and thermal properties of graphene nanoplates and functionalized carbon-nanotubes hybrid nanocomposites. American Journal of Materials Science, 6(5), 125-134. http://dx.doi.org/10.5923/j.materials.20160605.02.

18 Moosa, A. A., Abadi, A. R. S., Kubba, F. A. K., & Raad, M. (2017). Synergetic effects of graphene and nonfunctionalized carbon nanotubes hybrid reinforced epoxy matrix on mechanical, thermal and wettability properties of nanocomposites. American Journal of Materials Science, 7(1), 1-11. http://dx.doi.org/10.5923/j.materials.20170701.01.

19 Rong, M. Z., Zhang, M. Q., Liu, H., Zeng, H., Wetzel, B., & Friedrich, K. (2001). Microstructure and tribological behavior of polymeric nanocomposites. Industrial Lubrication and Tribology, 53(2), 72-77. http://dx.doi.org/10.1108/00368790110383993.

20 Amaral, C. R., Rodríguez, R. J. S., Barros Junior, L. P., Skury, A. L. D., & Monteiro, S. N. (2012). Mechanical properties and abrasive behavior of diamond incorporated epoxy composites. Materials Science Forum, 727–728, 1757-1762. http://dx.doi.org/10.4028/www.scientific.net/MSF.727-728.1757.

21 Zhu, Z.-K., Yang, Y., Yin, J., & Qi, Z.-N. (1999). Preparation and properties of organosoluble polyimide/silica hybrid materials by sol-gel process. Journal of Applied Polymer Science, 73(14), 2977-2984. http://dx.doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2977::AID-APP22>3.0.CO;2-J.

22 Wetzel, B., Haupert, F., & Zhang, M. Q. (2003). Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 63(14), 2055-2067. http://dx.doi.org/10.1016/S0266-3538(03)00115-5.

23 Saba, N., Tahir, P. M., Abdan, K., & Ibrahim, N. A. (2016). Fabrication of epoxy nanocomposites from oil palm nano filler: mechanical and morphological properties. BioResources, 11(3), 7721-7736. http://dx.doi.org/10.15376/biores.11.3.7721-7736.

24 Saba, N., Alothman, O. Y., Almutairi, Z., Jawaid, M., & Ghori, W. (2019). Date palm reinforced epoxy composites: tensile, impact and morphological properties. Journal of Materials Research and Technology, 8(5), 3959-3969. http://dx.doi.org/10.1016/j.jmrt.2019.07.004.

25 Zhai, Y.-J., Wang, Z.-C., Huang, W., Huang, J.-J., Wang, Y.-Y., & Zhao, Y.-Q. (2011). Improved mechanical properties of epoxy reinforced by low content nanodiamond powder. Materials Science and Engineering A, 528(24), 7295-7300. http://dx.doi.org/10.1016/j.msea.2011.06.053.

26 Almeida, G. R., No., Barcelos, M. V., Rodríguez, R. J. S., & Gomez, J. G. C. (2017). Influence of encapsulated nanodiamond dispersion on P(3HB) biocomposites properties. Materials Research, 20(3), 768-774. http://dx.doi.org/10.1590/1980-5373-mr-2016-0715.

27 Kubát, J., Rigdahl, M., & Welander, M. (1990). Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis. Journal of Applied Polymer Science, 39(7), 1527-1539. http://dx.doi.org/10.1002/app.1990.070390711.

28 Dong, S., & Gauvin, R. (1993). Application of dynamic mechanical analysis for the study of the interfacial region in carbon fiber/epoxy composite materials. Polymer Composites, 14(5), 414-420. http://dx.doi.org/10.1002/pc.750140508.

29 Ziegel, K. D., & Romanov, A. (1973). Modulus reinforcement in elastomer composites. I. Inorganic fillers. Journal of Applied Polymer Science, 17(4), 1119-1131. http://dx.doi.org/10.1002/app.1973.070170410.

30 Biswal, M., Mohanty, S., Nayak, S. K., & Kumar, P. S. (2013). Effect of functionalized nanosilica on the mechanical, dynamic-mechanical, and morphological performance of polycarbonate/nanosilica nanocomposites. Polymer Engineering and Science, 53(6), 1287-1296. http://dx.doi.org/10.1002/pen.23388.

31 Rakha, S. A., Raza, R., & Munir, A. (2013). Reinforcement effect of nanodiamond on properties of epoxy matrix. Polymer Composites, 34(6), 811-818. http://dx.doi.org/10.1002/pc.22480.

61eaeb3ba95395496953b824 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections