Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Effect of molar weight of gelatin in the coating of alginate microparticles

Joelma Correia Beraldo; Gislaine Ferreira Nogueira; Ana Silvia Prata; Carlos Raimundo Ferreira Grosso

Downloads: 0
Views: 77


The protein adsorption on the porous alginate microparticles was evaluated in regards to the coating ability and this protective effect during gastrointestinal assay. The coating was performed at suitable pH for optimized electrostatic interaction between protein and alginate. Concentrations of gelatin (HGE) and their hydrolysates (Collagel® (MGE) (> 10 kDa) and Fortigel® (LGE) (3 kDa)) from 1 to 10% (w/w) were tested. Higher protein adsorption was observed in the highest concentration of protein in solution and the amount adsorbed was inversely proportional to the degree of hydrolysis with 47.3, 41.4 and 29.3% of protein adsorbed when HGE, MGE and LGE were used, respectively. The particles that showed higher protein adsorption were submitted to gastrointestinal in vitro assay. In gastric simulation, 39.1, 41.8 and 49.0% of protein from HGE, MGE and LGE were solubilized while 81.3, 61.5 and 95.2% were solubilized after 5 h under enteric conditions.


microencapsulation, ionic gelation, electrostatic interaction, layer-by-layer, protein adsorption


1 Moura, S. C. S. R., Berling, C. L., Garcia, A. O., Queiroz, M. B., Alvim, I. D., & Hubinger, M. D. (2019). Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Research International, 121, 542-552. http://dx.doi.org/10.1016/j.foodres.2018.12.010. PMid:31108779.

2 Liu, Q., Cai, W., Zhen, T., Ji, N., Dai, L., Xiong, L., & Sun, Q. (2020). Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. International Journal of Biological Macromolecules, 161, 481-491. http://dx.doi.org/10.1016/j.ijbiomac.2020.06.070. PMid:32534085.

3 Dalponte Dallabona, I., de Lima, G. G., Cestaro, B. I., Tasso, I. S., Paiva, T. S., Laureanti, E. J. G., Jorge, L. M. M., Silva, B. J. G., Helm, C. V., Mathias, A. L., & Jorge, R. M. M. (2020). Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. International Journal of Biological Macromolecules, 163, 1421-1432. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.256. PMid:32738324.

4 Paula, H. C. B., Oliveira, E. F., Abreu, F. O. M. S., Paula, R. C. M., Morais, S. M., & Forte, M. M. C. (2010). ALG/Ca beads as an encapsulation agent of croton zehntneri Pax et Hoffm essential oil. Polímeros: Ciência e Tecnologia, 20(2), 112-120. http://dx.doi.org/10.1590/S0104-14282010005000019.

5 de Vos, P., Faas, M. M., Strand, B., & Calafiore, R. (2006). Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials, 27(32), 5603-5617. http://dx.doi.org/10.1016/j.biomaterials.2006.07.010. PMid:16879864.

6 Hansen, L. T., Allan-Wojtas, P. M., Jin, Y.-L., & Paulson, A. T. (2002). Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology, 19(1), 35-45. http://dx.doi.org/10.1006/fmic.2001.0452.

7 George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan: a review. Journal of Controlled Release, 114(1), 1-14. http://dx.doi.org/10.1016/j.jconrel.2006.04.017. PMid:16828914.

8 Silva Carvalho, A. G., Costa Machado, M. T., Barros, H. D. F. Q., Cazarin, C. B. B., Maróstica, M. R. Jr., & Hubinger, M. D. (2019). Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. Powder Technology, 345, 283-291. http://dx.doi.org/10.1016/j.powtec.2019.01.016.

9 Souza, F. N., Gebara, C., Ribeiro, M. C. E., Chaves, K. S., Gigante, M. L., & Grosso, C. R. F. (2012). Production and characterization of microparticles containing pectin and whey proteins. Food Research International, 49(1), 560-566. http://dx.doi.org/10.1016/j.foodres.2012.07.041.

10 Nogueira, G. F., Prata, A. S., & Grosso, C. R. F. (2017). Alginate and whey protein based-multilayered particles: production, characterisation and resistance to pH, ionic strength and artificial gastric/intestinal fluid. Journal of Microencapsulation, 34(2), 151-161. http://dx.doi.org/10.1080/02652048.2017.1310945. PMid:28338368.

11 Li, X. Y., Chen, X. G., Cha, D. S., Park, H. J., & Liu, C. S. (2009). Microencapsulation of a probiotic bacteria with alginate–gelatin and its properties. Journal of Microencapsulation, 26(4), 315-324. http://dx.doi.org/10.1080/02652040802328685. PMid:18668418.

12 Gennadios, A., Mchugh, T. H., Weller, C. L., & Krochta, J. M. (1994). Edible coating and films based on proteins. In J. M. Krochta, E. A. Baldwin & M. O. Nisperos-Carriedo (Eds.), Edible coatings and to improve food quality (pp. 201-277). Lancaster: Technomic Publishing.

13 Krochta, J. M., Baldwin, E. A., & Nisperos-Carriedo, M. O. (1994). Edible coatings and films to improve food quality. Lancaster: Technomic Publ. Co. Retrieved in 2020, August 13, from https://agris.fao.org/agris-search/search.do?recordID=US9530017

14 Gbassi, G., Vandamme, T., Ennahar, S., & Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology, 129(1), 103-105. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.11.012. PMid:19059666.

15 Tolstoguzov, V. (2003). Some thermodynamic considerations in food formulation. Food Hydrocolloids, 17(1), 1-23. http://dx.doi.org/10.1016/S0268-005X(01)00111-4.

16 Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids, 25(8), 1813-1827. http://dx.doi.org/10.1016/j.foodhyd.2011.02.007.

17 Vogler, E. A. (2012). Protein adsorption in three dimensions. Biomaterials, 33(5), 1201-1237. http://dx.doi.org/10.1016/j.biomaterials.2011.10.059. PMid:22088888.

18 Horwitz, W., & Latimer, G. W. (2006). Official methods of Analysis of Association of Official Analytical Chemists International. Rockville: AOAC International.

19 Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. http://dx.doi.org/10.1038/227680a0. PMid:5432063.

20 Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2. PMid:2449095.

21 Sanders, B. J. (1972). Animal histology procedures of the pathological technology section of the National Cancer Institute. Bethesda: Pathological Technology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health. Retrieved in 2020, August 13, from https://books.google.com.br/books?id=PZInGVWoUSsC

22 Mozzi, F., Gerbino, E., Font de Valdez, G., & Torino, M. I. (2009). Functionality of exopolysaccharides produced by lactic acid bacteria in an in vitro gastric system. Journal of Applied Microbiology, 107(1), 56-64. http://dx.doi.org/10.1111/j.1365-2672.2009.04182.x. PMid:19291238.

23 Wang, L., Yang, S., Cao, J., Zhao, S., & Wang, W. (2016). Microencapsulation of ginger volatile oil based on gelatin/sodium alginate polyelectrolyte complex. Chemical & Pharmaceutical Bulletin, 64(1), 21-26. http://dx.doi.org/10.1248/cpb.c15-00571. PMid:26726741.

24 Bastos, L. P. H., Vicente, J., Santos, C. H. C., Carvalho, M. G., & Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102, 105605. http://dx.doi.org/10.1016/j.foodhyd.2019.105605.

25 Opanasopit, P., Apirakaramwong, A., Ngawhirunpat, T., Rojanarata, T., & Ruktanonchai, U. (2008). Development and characterization of pectinate micro/nanoparticles for gene delivery. American Association of Pharmaceutical Scientists, 9(1), 67-74. http://dx.doi.org/10.1208/s12249-007-9007-7. PMid:18446463.

26 Tello, F., Falfan-Cortés, R. N., Martinez-Bustos, F., Martins da Silva, V., Hubinger, M. D., & Grosso, C. (2015). Alginate and pectin-based particles coated with globular proteins: Production, characterization and anti-oxidative properties. Food Hydrocolloids, 43, 670-678. http://dx.doi.org/10.1016/j.foodhyd.2014.07.029.

27 Schmitt, C., Sanchez, C., Desobry-Banon, S., & Hardy, J. (1998). Structure and technofunctional properties of protein-polysaccharide complexes: a review. Critical Reviews in Food Science and Nutrition, 38(8), 689-753. http://dx.doi.org/10.1080/10408699891274354. PMid:9850463.

28 Weinbreck, F., Minor, M., & Kruif, C. G. (2004). Microencapsulation of oils using whey protein/gum arabic coacervates. Journal of Microencapsulation, 21(6), 667-679. http://dx.doi.org/10.1080/02652040400008499. PMid:15762323.

29 Prata, A. S., & Grosso, C. R. F. (2015). Influence of the oil phase on the microencapsulation by complex coacervation. Journal of the American Oil Chemists’ Society, 92(7), 1063-1072. http://dx.doi.org/10.1007/s11746-015-2670-z.

30 Ramsden, J. J. (1995). Puzzles and paradoxes in protein adsorption. Chemical Society Reviews, 24(1), 73. http://dx.doi.org/10.1039/cs9952400073.

31 Roach, P., Farrar, D., & Perry, C. C. (2005). Interpretation of protein adsorption: surface-induced conformational changes. Journal of the American Chemical Society, 127(22), 8168-8173. http://dx.doi.org/10.1021/ja042898o. PMid:15926845.

32 Molina-Ortiz, S. E., Puppo, M. C., & Wagner, J. R. (2004). Relationship between structural changes and functional properties of soy protein isolates-carrageenan systems. Food Hydrocolloids, 18(6), 1045-1053. http://dx.doi.org/10.1016/j.foodhyd.2004.04.011.

33 Brassesco, M. E., Fuciños, P., Pastrana, L., & Picó, G. (2019). Development of alginate microparticles as efficient adsorption matrix for protein recovery. Process Biochemistry, 80, 157-163. http://dx.doi.org/10.1016/j.procbio.2019.02.016.

34 Yang, J. M., Tsai, R.-Z., & Hsu, C.-C. (2016). Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films. Colloids and Surfaces. B, Biointerfaces, 142, 98-104. http://dx.doi.org/10.1016/j.colsurfb.2016.02.039. PMid:26938325.

35 Malinova, V., Freitag, R., & Wandrey, C. (2004). Adsorption of charged macromolecules on oppositely charged porous column materials. Journal of Chromatography. A, 1036(1), 25-32. http://dx.doi.org/10.1016/j.chroma.2003.10.087. PMid:15139410.

36 Rahmati, M., & Mozafari, M. (2018). Protein adsorption on polymers. Materials Today Communications, 17, 527-540. http://dx.doi.org/10.1016/j.mtcomm.2018.10.024.

37 Kitabatake, N., & Kinekawa, Y.-I. (1998). Digestibility of bovine milk whey protein and β-lactoglobulin in vitro and in vivo. Journal of Agricultural and Food Chemistry, 46(12), 4917-4923. http://dx.doi.org/10.1021/jf9710903.

38 Wang, L., Liang, Q., Chen, Q., Xu, J., Shi, Z., Wang, Z., Liu, Y., & Ma, H. (2014). Hydrolysis kinetics and radical-scavenging activity of gelatin under simulated gastrointestinal digestion. Food Chemistry, 163, 1-5. http://dx.doi.org/10.1016/j.foodchem.2014.04.083. PMid:24912688.

61a520fea953953bf06c9636 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections