Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210017
Polímeros: Ciência e Tecnologia
Original Article

Development of electrically conductive polymer nanocomposites for the automotive cable industry

Miguel Guerreiro; Joana Rompante; André Costa Leite; Luís Paulo Fernandes; Rosa Maria Santos; Maria Conceição Paiva; José António Covas

Downloads: 0
Views: 742

Abstract

Environmental concerns and the urgent need for reduction of fossil fuel consumption motivate materials research towards increased transportation efficiency. This work investigates the possibility of reducing the weight of electrical cables in automotive applications by replacing part of the metallic screen with electrically conductive polymer/carbon nanotube (CNT) nanocomposites. PP and PA12 were tested as possible matrices and the melt processability of the composites prepared by melt mixing was assessed for compositions up to 4 CNT wt. %. The tensile and flexural mechanical properties, the electrical conductivity, as well as the electromagnetic shielding effectiveness were evaluated. The performance of PA12/CNT composites was much higher than that of PP/CNT equivalents, due to better dispersion. It was demonstrated that, at industrial production scale, these materials could achieve a reduction of 4-20 weigth % relative to a standard automotive cable.

Keywords

high voltage cables, carbon nanotubes, nanocomposites, electrical conductivity, wire insulation

References

1 International Cable Federation – ICF. (2015). Trends in automotive wiring. Austria: ICF.

2 WardsAuto. (2017). Auto engineers see future CAFE rules easing. Southfield, MI: WardsAuto Group.

3 Community Research and Development Information Service – CORDIS. (2017). Ultra conductive copper-carbon nanotube wire. Cambridge, UK: CORDIS.

4 Advanced Industries. (2012). Lightweight, heavy impact. USA: McKinsey & Company.

5 Berylls Strategy Advisors. (2016). Automotive lightweight: heavy impact. In Economic Symposium. Austria.

6 European Comission. (2014). Strategy for reducing Heavy-Duty Vehicles fuel consumption and CO2 emissions - COM(2014)285. Belgium: European Comission.

7 International Council On Clean Transportat – ICCT. (2016). 2020-2030 CO2 standards for new cars and light-commercial vehicles in the European Union. Brussels: ICCT.

8 International Council On Clean Transportat – ICCT. (2017). Lightweighting technology developments. USA: ICCT.

9 European Environment Agency – EEA. (2020). Monitoring CO2 emissions from passenger cars and vans in 2018. Luxembourg: EEA.

10 Lekawa-Raus, A., Patmore, J., Kurzepa, L., Bulmer, J., & Koziol, K. (2014). Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Advanced Functional Materials, 24(24), 3661-3682. http://dx.doi.org/10.1002/adfm.201303716.

11 Mittal, V., Kim, J. K., & Pal, K. (2011). Recent advances in elastomeric nanocomposites. London: Springer. http://dx.doi.org/10.1007/978-3-642-15787-5.

12 Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering R Reports, 43(3), 61-102. http://dx.doi.org/10.1016/j.mser.2003.10.001.

13 Ali, M. N., Alamri, H., & Wahab, A. (2015). Conductive nanocomposite fabrication by graphene enriched polypropylene master batch. International Journal of Engineering Development and Research, 3(4), 979-990. Retrieved in 2021, February 15, from https://www.ijedr.org/papers/IJEDR1504172.pdf

14 Du, F., Fischer, J. E., & Winey, K. I. (2005). Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. American Physical Society, 72(12), 1-4. http://dx.doi.org/10.1103/PhysRevB.72.121404.

15 Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. http://dx.doi.org/10.1016/j.compscitech.2008.06.018.

16 Bhattacharya, M. (2016). Polymer nanocomposites: a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials, 9(4), 262. http://dx.doi.org/10.3390/ma9040262. PMid:28773388.

17 Tanaka, K., & Iijima, S. (2014). Carbon nanotubes and graphene. Kidlington: Elsevier.

18 Ma, P.-C., & Kim, J.-K. (2011). Carbon nanotubes for polymer reinforcement. USA: CRC Press Taylor & Francis Group. http://dx.doi.org/10.1201/b10795.

19 Das, D., & Rahaman, H. (2015). Carbon nanotube and graphene nanoribbon interconnects. USA: CRC Press Taylor & Francis Group.

20 Li, J., Ma, P. C., Sze, C. W., Kai, T. C., Tang, B. Z., & Kim, J.-K. (2007). Percolation threshold of polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes. In 16th International Conference on Composite Materials. Koyoto: International Conference On Composite Materials. Retrieved in 2021, February 15, from https://www.iccm-central.org/Proceedings/ICCM16proceedings/contents/pdf/FriG/FrGM1-07ge_lij223410p.pdf

21 Socher, R., Krause, B., & Pötschke, P. (2017). Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites. In AIP Conference Proceedings. Lyon: Polymer Processing Society. http://dx.doi.org/10.1063/1.5016703.

22 Paiva, M. C., & Covas, J. A. (2016). Carbon nanofibres and nanotubes for composite applications. In S. Rana & R. Fanguiro (Eds.), Fibrous and textile materials for composite applications (pp. 231-260). Singapore: Springer Nature. http://dx.doi.org/10.1007/978-981-10-0234-2_7.

23 Hocke, H., & Vitovsky, J. (2014). EP2810977A1. Munich: European Patent Office. Retrieved in 2021, February 15, from https://data.epo.org/gpi/EP2810977A1

24 Yan, D., Zhang, H. B., Jia, Y., Hu, J., Qi, X. Y., Zhang, Z., & Yu, Z. Z. (2012). Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding. ACS Applied Materials & Interfaces, 4(9), 4740-4745. http://dx.doi.org/10.1021/am301119b. PMid:22889067.

25 Socher, R., Krause, B., Hermasch, S., Wursche, R., & Pötschke, P. (2011). Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Composites Science and Technology, 71(8), 1053-1059. http://dx.doi.org/10.1016/j.compscitech.2011.03.004.

26 Jamali, S., Paiva, M. C., & Covas, J. A. (2013). Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polymer Testing, 32(4), 701-707. http://dx.doi.org/10.1016/j.polymertesting.2013.03.005.

27 Vilaverde, C., Santos, R. M., Paiva, M. C., & Covas, J. A. (2015). Dispersion and re-agglomeration of graphite nanoplates in polypropylene melts under controlled flow conditions. Composites. Part A, Applied Science and Manufacturing, 78, 143-151. http://dx.doi.org/10.1016/j.compositesa.2015.08.010.

28 Rodrigues, P., Santos, R. M., Paiva, M. C., & Covas, J. A. (2017). Development of dispersion during compounding and extrusion of polypropylene/graphite nanoplates composites. International Polymer Processing, 32(5), 614-622. http://dx.doi.org/10.3139/217.3485.

29 Palacios-Aguilar, E., Bonilla-Rios, J., Sanchez-Fernandez, J. A., Vargas-Martinez, A., Lozoya-Santos, J. J., & Ramırez-Mendoza, R. (2020). Comparing the elasticity of the melt and electrical conductivity of the solid of PP-HDPE copolymer CNT composites obtained by direct compounding versus dilution of a PP masterbatch. Journal of Intelligent Material Systems and Structures, 32(10), 1105-1115. http://dx.doi.org/10.1177/1045389X20969836.

30 Socher, R., Krause, B., Boldt, R., Hermasch, S. A., Wursche, R., & Pötschke, P. (2011). Melt mixed nano composites of PA12 with MWNTs: influence of MWNT and matrix properties on macrodispersion and electrical properties. Composites Science and Technology, 71(3), 306-314. http://dx.doi.org/10.1016/j.compscitech.2010.11.015.

31 Witkowski, A., Stec, A. A., & Hull, T. R. (2015). Thermal decomposition of polymeric materials. In M. J. Hurley (Eds.), SFPE handbook of fire protection (pp. 167-254). New York: Society of Fire Protection Engineers. http://dx.doi.org/10.1007/978-1-4939-2565-0.

32 Buzarovska, A., Stefov, V., Najdoski, M., & Bogoeva-Gaceva, G. (2015). Thermal analysis of multi-walled carbon nanotubes material obtained by catalytic pyrolysis of polyethylene. Macedonian Journal of Chemistry and Chemical Engineering, 34(2), 373-379. http://dx.doi.org/10.20450/mjcce.2015.620.

33 Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18), 4001-4010. http://dx.doi.org/10.1016/j.polymer.2011.06.045.

34 Yetgin, S. H. (2019). Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. Journal of Materials Research and Technology, 8(5), 4725-4735. http://dx.doi.org/10.1016/j.jmrt.2019.08.018.

35 Prashantha, K., Soulestin, J., Lacrampe, M. F., Claes, M., Dupin, G., & Krawczak, P. (2008). Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters, 2(10), 735-745. http://dx.doi.org/10.3144/expresspolymlett.2008.87.

36 Radi, H., & Rasmussen, J. O. (2013). Principles of physics. USA: Springer. http://dx.doi.org/10.1007/978-3-642-23026-4.

37 Al-Saleh, M. H., Saadeh, W. H., & Sundararaj, U. (2013). EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon, 60, 146-156. http://dx.doi.org/10.1016/j.carbon.2013.04.008.

38 Poothanari, M. A., Pottathara, Y. B., & Thomas, S. (2019). Carbon nanostructures for electromagnetic shielding applications. In S. Thomas, Y. Grohens & Y. B. Pottathara (Eds.), Industrial applications of nanomaterials: micro and nano technologies. Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-12-815749-7.00008-6.
 

61a622eca953950c0609e3e2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections