Development of electrically conductive polymer nanocomposites for the automotive cable industry
Miguel Guerreiro; Joana Rompante; André Costa Leite; Luís Paulo Fernandes; Rosa Maria Santos; Maria Conceição Paiva; José António Covas
Abstract
Keywords
References
1 International Cable Federation – ICF. (2015).
2 WardsAuto. (2017).
3 Community Research and Development Information Service – CORDIS. (2017).
4 Advanced Industries. (2012).
5 Berylls Strategy Advisors. (2016). Automotive lightweight: heavy impact. In
6 European Comission. (2014).
7 International Council On Clean Transportat – ICCT. (2016).
8 International Council On Clean Transportat – ICCT. (2017).
9 European Environment Agency – EEA. (2020).
10 Lekawa-Raus, A., Patmore, J., Kurzepa, L., Bulmer, J., & Koziol, K. (2014). Electrical properties of carbon nanotube based fibers and their future use in electrical wiring.
11 Mittal, V., Kim, J. K., & Pal, K. (2011).
12 Popov, V. N. (2004). Carbon nanotubes: properties and application.
13 Ali, M. N., Alamri, H., & Wahab, A. (2015). Conductive nanocomposite fabrication by graphene enriched polypropylene master batch.
14 Du, F., Fischer, J. E., & Winey, K. I. (2005). Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites.
15 Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites.
16 Bhattacharya, M. (2016). Polymer nanocomposites: a comparison between carbon nanotubes, graphene, and clay as nanofillers.
17 Tanaka, K., & Iijima, S. (2014).
18 Ma, P.-C., & Kim, J.-K. (2011).
19 Das, D., & Rahaman, H. (2015).
20 Li, J., Ma, P. C., Sze, C. W., Kai, T. C., Tang, B. Z., & Kim, J.-K. (2007). Percolation threshold of polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes. In
21 Socher, R., Krause, B., & Pötschke, P. (2017). Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites. In
22 Paiva, M. C., & Covas, J. A. (2016). Carbon nanofibres and nanotubes for composite applications. In S. Rana & R. Fanguiro (Eds.),
23 Hocke, H., & Vitovsky, J. (2014). EP2810977A1. Munich: European Patent Office. Retrieved in 2021, February 15, from
24 Yan, D., Zhang, H. B., Jia, Y., Hu, J., Qi, X. Y., Zhang, Z., & Yu, Z. Z. (2012). Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding.
25 Socher, R., Krause, B., Hermasch, S., Wursche, R., & Pötschke, P. (2011). Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black.
26 Jamali, S., Paiva, M. C., & Covas, J. A. (2013). Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes.
27 Vilaverde, C., Santos, R. M., Paiva, M. C., & Covas, J. A. (2015). Dispersion and re-agglomeration of graphite nanoplates in polypropylene melts under controlled flow conditions.
28 Rodrigues, P., Santos, R. M., Paiva, M. C., & Covas, J. A. (2017). Development of dispersion during compounding and extrusion of polypropylene/graphite nanoplates composites.
29 Palacios-Aguilar, E., Bonilla-Rios, J., Sanchez-Fernandez, J. A., Vargas-Martinez, A., Lozoya-Santos, J. J., & Ramırez-Mendoza, R. (2020). Comparing the elasticity of the melt and electrical conductivity of the solid of PP-HDPE copolymer CNT composites obtained by direct compounding versus dilution of a PP masterbatch.
30 Socher, R., Krause, B., Boldt, R., Hermasch, S. A., Wursche, R., & Pötschke, P. (2011). Melt mixed nano composites of PA12 with MWNTs: influence of MWNT and matrix properties on macrodispersion and electrical properties.
31 Witkowski, A., Stec, A. A., & Hull, T. R. (2015). Thermal decomposition of polymeric materials. In M. J. Hurley (Eds.),
32 Buzarovska, A., Stefov, V., Najdoski, M., & Bogoeva-Gaceva, G. (2015). Thermal analysis of multi-walled carbon nanotubes material obtained by catalytic pyrolysis of polyethylene.
33 Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties.
34 Yetgin, S. H. (2019). Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene.
35 Prashantha, K., Soulestin, J., Lacrampe, M. F., Claes, M., Dupin, G., & Krawczak, P. (2008). Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition.
36 Radi, H., & Rasmussen, J. O. (2013).
37 Al-Saleh, M. H., Saadeh, W. H., & Sundararaj, U. (2013). EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study.
38 Poothanari, M. A., Pottathara, Y. B., & Thomas, S. (2019). Carbon nanostructures for electromagnetic shielding applications. In S. Thomas, Y. Grohens & Y. B. Pottathara (Eds.),