Modification of poly(lactic acid) filament with expandable graphite for additive manufacturing using fused filament fabrication (FFF): effect on thermal and mechanical properties
João Miguel Ayres Melillo; Iaci Miranda Pereira; Artur Caron Mottin; Fernando Gabriel da Silva Araujo
Abstract
Keywords
References
1 Khosravani, M. R., & Reinicke, T. (2020). On the environmental impacts of 3D printing technology.
2 Wu, H., Sulkis, M., Driver, J., Saade-Castillo, A., Thompson, A., & Koo, J. H. (2018). Multi-functional ULTEMTM1010 composite filaments for additive manufacturing using Fused Filament Fabrication (FFF).
3 Singh, S., Ramakrishna, S., & Berto, F. (2020). 3D Printing of polymer composites: a short review.
4 Seng, C. T., A/L Eh Noum, S. Y., A/L Sivanesan, S. K. & Yu, L.-J. (2020). Reduction of hygroscopicity of PLA filament for 3D printing by introducing nano silica as filler.
5 Lee, K. M., Park, H., Kim, J., & Chun, D. M. (2019). Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles.
6 Maqsood, M., & Seide, G. (2020). Biodegradable Flame Retardants for Biodegradable
7 Chow, W. S., Teoh, E. L., & Karger-Kocsis, J. (2018). Flame retarded poly (lactic acid): A review.
8 Wang, X., He, W., Long, L., Huang, S., Qin, S., & Xu, G. (2020). A phosphorus-and nitrogen-containing DOPO derivative as flame retardant for polylactic acid (PLA).
9 Xue, Y., Zuo, X., Wang, L., Zhou, Y., Pan, Y., Li, J., Yin, Y., Li, D., Yang, R., Rafailovich, M. H., & Guo, Y. (2020). Enhanced flame retardancy of poly (lactic acid) with ultra-low loading of ammonium polyphosphate.
10 Babu, K., Rendén, G., Afriyie Mensah, R., Kim, N. K., Jiang, L., Xu, Q., Restás, Á., Esmaeely Neisiany, R., Hedenqvist, M. S., Försth, M., Byström, A., & Das, O. (2020). A review on the flammability properties of carbon-based polymeric composites: state-of-the-art and future trends.
11 Wei, P., Bocchini, S., & Camino, G. (2013). Flame retardant and thermal behavior of polylactide/expandable graphite composites.
12 Brisigueli, R. P., & Morales, A. R. (2014). Study of mechanical and thermal behavior of pla modified with nucleating additive and impact modifier.
13 Jang, J., & Lee, E. (2000). Improvement of the flame retardancy of paper-sludge/polypropylene composite.
14 Yang, Y., Haurie, L., Wen, J., Zhang, S., Ollivier, A., & Wang, D. Y. (2019). Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites.
15 Liu, C., Ye, S., & Feng, J. (2017). Promoting the dispersion of graphene and crystallization of poly (lactic acid) with a freezing-dried graphene/PEG masterbatch.
16 Acuña, P., Li, Z., Santiago-Calvo, M., Villafañe, F., Rodríguez-Perez, M. Á., & Wang, D. Y. (2019). Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behaviour and compression performance of a rigid polyurethane foam.
17 Uhl, F. M., Yao, Q., Nakajima, H., Manias, E., & Wilkie, C. A. (2005). Expandable graphite/polyamide-6 nanocomposites.
18 Mngomezulu, M. E., Luyt, A. S., & John, M. J. (2019). Morphology, thermal and dynamic mechanical properties of poly (lactic acid)/expandable graphite (PLA/EG) flame retardant composites.
19 Bannach, G., Perpétuo, G. L., Cavalheiro, E. T. G., Cavalheiro, C. C. S., & Rocha, R. R. (2011). Effects of the thermal history on thermal properties of polymers: an experiment for thermal analysis education.
20 Athanasoulia, I. G. I., Christoforidis, M. N., Korres, D. M., & Tarantili, P. A. (2019). The effect of poly(ethylene glycol)mixed with poly(L-lactic acid) on the crystallization characteristics and properties of their blends.
21 Refaa, Z., Boutaous, M. H., Xin, S., & Siginer, D. A. (2017). Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc.
22 Li, H., & Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly (lactic acid).
23 Li, F. J., Zhang, S. D., Liang, J. Z., & Wang, J. Z. (2015). Effect of polyethylene glycol on the crystallization and impact properties of polylactide‐based blends.
24 Ortenzi, M. A., Basilissi, L., Farina, H., Di Silvestro, G., Piergiovanni, L., & Mascheroni, E. (2015). Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “
25 Hu, Y., Hu, Y. S., Topolkaraev, V., Hiltner, A., & Baer, E. (2003). Crystallization and phase separation in blends of high stereoregular poly (lactide) with poly (ethylene glycol).
26 Athanasoulia, I.-G., Giachalis, K., Todorova, N., Giannakopoulou, T., Tarantili, P., & Trapalis, C. (2021). Preparation of hybrid composites of PLLA using GO/PEG masterbatch and their characterization.
27 Barletta, M., Pizzi, E., Puopolo, M., Vesco, S., & Daneshvar‐Fatah, F. (2017). Thermal behavior of extruded and injection‐molded poly (lactic acid)–talc engineered biocomposites: effects of material design, thermal history, and shear stresses during melt processing.
28 Murariu, M., Dechief, A. L., Bonnaud, L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S., & Dubois, P. (2010). The production and properties of polylactide composites filled with expanded graphite.
29 Androsch, R., Zhang, R., & Schick, C. (2019). Melt-recrystallization of poly (L-lactic acid) initially containing α′-crystals.
30 Yang, Y. X., Haurie, L., Zhang, J., Zhang, X. Q., Wang, R., & Wang, D. Y. (2020). Effect of bio-based phytate (PA-THAM) on the flame retardant and mechanical properties of polylactide (PLA).
31 Li, R., Wang, N., Bai, Z., Chen, S., Guo, J., & Chen, X. (2021). Microstructure design of polypropylene/expandable graphite flame retardant composites toughened by the polyolefin elastomer for enhancing its mechanical properties.
32 Oulmou, F., Benhamida, A., Dorigato, A., Sola, A., Messori, M., & Pegoretti, A. (2019). Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11.
33 Przekop, R. E., Kujawa, M., Pawlak, W., Dobrosielska, M., Sztorch, B., & Wieleba, W. (2020). Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements.
34 Sun, Y., Sun, S., Chen, L., Liu, L., Song, P., Li, W., Yu, Y., Fengzhu, L., Qian, J., & Wang, H. (2017). Flame retardant and mechanically tough poly (lactic acid) biocomposites via combining ammonia polyphosphate and polyethylene glycol.
35 Chen, C. H., Yen, W. H., Kuan, H. C., Kuan, C. F., & Chiang, C. L. (2010). Preparation, characterization, and thermal stability of novel PMMA/expandable graphite halogen‐free flame-retardant composites.
36 Li, L., Wang, D., Chen, S., Zhang, Y., Wu, Y., Wang, N., Chen, X., Qin, J., Zhang, K., & Wu, H. (2020). Effect of organic grafting expandable graphite on combustion behaviors and thermal stability of low‐density polyethylene composites.
37 Xiong, W., Liu, H., Tian, H., Wu, J., Xiang, A., Wang, C., Ma, S., & Wu, Q. (2020). Mechanical and flame‐resistance properties of polyurethane‐imide foams with different‐sized expandable graphite.
38 Pagnan, C. S., Mottin, A. C., Oréfice, R. L., Ayres, E., & Câmara, J. J. D. (2018). Annatto-colored poly (3-hydroxybutyrate): a comprehensive study on photodegradation.
39 Subramaniam, S. R., Samykano, M., Selvamani, S. K., Ngui, W. K., Kadirgama, K., Sudhakar, K., & Idris, M. S. (2019). 3D printing: overview of PLA progress.
40 Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., & Carou, D. (2018). Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters.
41 Wickramasinghe, S., Do, T., & Tran, P. (2020). FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments.