Fabrication of fracturing fluid with cationic surfactants and carboxymethyl hydroxyethyl cellulose
Sanbao Dong; Wen Tian; Wenting Qiang; Long Jiao; Jie Zhang; Gang Chen
Abstract
Keywords
References
1 Wang, J., Feng, L., Steve, M., Tang, X., Gail, T. E., & Mikael, H. (2015). China’s unconventional oil: A review of its resources and outlook for long-term production.
2 Das, A., Chauhan, G., Verma, A., Kalita, P., & Ojha, K. (2018). Rheological and breaking studies of a novel single-phase surfactant-polymeric gel system for hydraulic fracturing application.
3 Barati, R., & Liang, J.-T. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells.
4 Zhang, Y., Mao, J., Zhao, J., Yang, X., Zhang, Z., Yang, B., Zhang, W., & Zhang, H. (2018). Preparation of a novel ultra-high temperature low-damage fracturing fluid system using dynamic crosslinking strategy.
5 Pu, W., Du, D.-J., & Liu, R. (2018). Preparation and evaluation of supramolecular fracturing fluid of hydrophobically associative polymer and viscoelastic surfactant.
6 Zhang, W., Mao, J., Yang, X., Zhang, H., Zhao, J., Tian, J., Lin, C., & Mao, J. (2019). Development of a sulfonic gemini zwitterionic viscoelastic surfactant with high salt tolerance for seawater-based clean fracturing fluid.
7 An, M., Huang, H., Zhang, F., & Elsworth, D. (2020). Effect of slick-water fracturing fluid on the frictional properties of shale reservoir rock gouges.
8 Yang, W., Guan, B., Liang, L., Liu, X. W., & Liu, Y. (2018). Development and application of high salinity water-based fracturing fluid stabilizer.
9 Wang, Y., Zhang, C., Xu, N., Lan, J., Jiang, B., & Meng, L. (2021). Synthesis and properties of organoboron functionalized nanocellulose for crosslinking low polymer fracturing fluid system.
10 Zhao, M., Li, Y., Xu, Z., Wang, K., Gao, M., Lv, W., & Dai, C. (2020). Dynamic cross-linking mechanism of acid gel fracturing fluid.
11 Huang, Q., Liu, S., Wang, G., Wu, B., Yang, Y., & Liu, Y. (2019). Gas sorption and diffusion damages by guar-based fracturing fluid for CBM reservoirs.
12 Zhang, Y., Mao, J., Xu, T., Zhang, Z., Yang, B., Mao, J., & Yang, X. (2019). Preparation of a novel fracturing fluid with good heat and shear resistance.
13 Shao, Y., Mao, J., Yang, B., Zhao, J., & Yang, X. J. (2020). High performance hydrophobic associated polymer for fracturing fluids with low-dosage.
14 Tran, T., Gonzalez Perdomo, M. E., Wilk, K., Kasza, P., & Amrouch, K. (2020). Performance evaluation of synthetic and natural polymers in nitrogen foam-based fracturing fluids in the cooper basin, South Australia.
15 Tang, J., Li, H., Yan, S., & Yan, S. (2020). In situ synthesis, structure, and properties of a dendritic branched nano-thickening agent for high temperature fracturing fluid.
16 Zhao, X., Guo, J., Peng, H., Pan, R., Aliu, A. O., Lu, Q. L., & Yang, J. (2017). Synthesis and evaluation of a novel clean hydraulic fracturing fluid based on star-dendritic polymer.
17 Zhao, J., Yang, B., Mao, J., Zhang, Y., Yang, X., Zhang, Z., & Shao, Y. (2018). A novel hydrophobic associative polymer by RAFT-MADIX copolymerization for fracturing fluids with high thermal stability.
18 Kang, W., Mushi, S. J., Yang, H., Wang, P., & Hou, X. (2020). Development of smart viscoelastic surfactants and its applications in fracturing fluid: A review.
19 Yan, J., Li, Y., Xie, X., Slaný, M., Dong, S., Wu, Y., & Chen, G. (2023). Research of a novel fracturing-production fluid base on small molecule surfactant.
20 Zhang, W., Mao, J., Yang, X., Zhang, H., Zhang, Z., Yang, B., Zhang, Y., & Zhao, J. (2018). Study of a novel Gemini viscoelastic surfactant with high performance in clean fracturing fluid application.
21 Wu, Y., Zhang, J., Dong, S., Li, Y., Slaný, M., & Chen, G. (2022). Use of betaine-based gel and its potential application in enhanced oil recovery.
22 Baruah, A., Shekhawat, D. S., Pathak, A. K., & Ojha, K. (2016). Experimental investigation of rheological properties in zwitterionic-anionic mixed-surfactant based fracturing fluids.
23 Baruah, A., Pathak, A. K., & Ojha, K. (2016). Study on rheology and thermal stability of mixed (nonionic-anionic) surfactant based fracturing fluids.
24 Baruah, A., Pathak, A. K., & Ojha, K. (2015). Phase behavior and thermodynamic properties of lamellar liquid crystal developed for viscoelastic surfactant based fracturing fluid.
25 Lv, Q., Li, Z., Li, B., Li, S., & Sun, Q. (2015). Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid.
26 Li, C., Huang, Y., Sun, X., Gao, R., Zeng, F., Tontiwachwuthikul, P., & Liang, Z. (2017). Rheological properties study of foam fracturing fluid using CO2 and surfactant.
27 Yekeen, N., Padmanabhan, E., & Idris, A. K. (2018). A review of recent advances in foam-based fracturing fluid application in unconventional reservoirs.
28 Ahmed, S., Elraies, K. A., Hashmet, M. R., & Hanamertani, A. S. (2017). Viscosity models for polymer free CO2 foam fracturing fluid with the effect of surfactant concentration, salinity and shear rate.
29 Jing, Z., Feng, C., Wang, S., & Xu, D. (2019). Effects of temperature and pressure on rheology and heat transfer among bubbles in waterless CO2-based foam fracturing fluid.
30 Verma, A., Chauhan, G., & Ojha, K. (2018). Characterization of α-olefin sulfonate foam in presence of cosurfactants: stability, foamability and drainage kinetic study.
31 Verma, A., Chauhan, G., Ojha, K., & Padmanabhan, E. (2019). Characterization of nano-Fe2O3-stabilized polymer-free foam fracturing fluids for unconventional gas reservoirs.
32 Chen, G., Yan, J., Liu, Q., Zhang, J., Li, H., Li, J., Qu, C., & Zhang, Y. (2019). Preparation and surface activity study of amino acid surfactants.
33 Chen, F., Wu, Y., Wang, M., & Zha, R. (2015). Self-assembly networks of wormlike micelles and hydrophobically modified polyacrylamide with high performance in fracturing fluid application.
34 Zhang, Y., Dai, C., Qian, Y., Fan, X., Jiang, J., Wu, Y., Wu, X., Huang, Y., & Zhao, M. (2018). Rheological properties and formation dynamic filtration damage evaluation of a novel nanoparticle-enhanced VES fracturing system constructed with wormlike micelles.
35 Qiu, L., Shen, Y., & Wang, C. (2018). pH- and KCl-induced formation of worm-like micelle viscoelastic fluids based on a simple tertiary amine surfactant.
36 Yang, C., Hu, Z., Song, Z., Bai, J., Zhang, Y., Luo, J., Du, Y., & Jiang, Q. (2017). Self-assembly properties of ultra-long-chain Gemini surfactant with high performance in a fracturing fluid application.
37 Lu, Y., Yang, F., Ge, Z., Wang, S., & Wang, Q. (2015). The influence of viscoelastic surfactant fracturing fluids on gas desorption in soft seams.
38 Yang, M., Lu, Y., Ge, Z., Zhou, Z., Chai, C., & Zhang, L. (2020). Optimal selection of viscoelastic surfactant fracturing fluids based on influence on coal seam pores.
39 Dai, C., Wu, X., Li, W., You, Q., Zhao, M., Du, M., Liu, Y., & Li, Y. (2015). The role of hydroxyethyl groups in the construction of wormlike micelles in the system of quaternary ammonium surfactant and sodium salicylate.
40 Nettesheim, F., Liberatore, M. W., Hodgdon, T. K., Wagner, N. J., Kaler, E. W., & Vethamuthu, M. (2008). Influence of nanoparticle addition on the properties of wormlike micellar solutions.
41 Gao, Z., Dai, C., Sun, X., Huang, Y., Gao, M., & Zhao, M. W. (2019). Investigation of cellulose nanofiber enhanced viscoelastic fracturing fluid system: increasing viscoelasticity and reducing filtration.
42 Huang, F., Pu, C., Gu, X., Ye, Z., Khan, N., An, J., Wu, F., & Liu, J. (2021). Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs.
43 Wu, H., Zhou, Q., Xu, D., Sun, R., Zhang, P., Bai, B., & Kang, W. (2018). SiO2 nanoparticle-assisted low-concentration viscoelastic cationic surfactant fracturing fluid.
44 Huang, T., & Crews, J. B. (2008). Nanotechnology applications in viscoelastic-surfactant stimulation fluids.
45 Walker, F., Isabettini, S., Kuster, S., Fischer, P., & Lutz-Bueno, V. (2019). Molecular interactions and the viscoelasticity of micellar aggregates.
46 Dai, C., Zhang, Y., Gao, M., Li, Y., Lv, W., Wang, X., Wu, Y., & Zhao, M. (2017). The study of a novel nanoparticle-enhanced wormlike micellar system.
47 Li, G., Fang, B., Lu, Y., Li, K., Ma, M., Qiu, X., Wang, L., Liu, Y., Yang, M., & Huang, C. (2016). Intrinsic crosslingking and gel-breaking rheo-kinetics of CMHEC/CTAB systems.
48 Aliu, A. O., Guo, J., Wang, S., & Zhao, X. ¨. (2016). Hydraulic fracturing fluid for gas reservoirs in petroleum engineering applications using sodium carboxy methyl cellulose as gelling agent.
49 Sun, R., Fang, B., Lu, Y., Qiu, X., Du, W., Han, X., Zhou, Q., & Qiu, Y. (2018). Rheological properties of hexadecyl dimethyl amine modified carboxymethyl hydroxyethyl cellulose solutions and its gelling process.
50 Li, G., Fang, B., Lu, Y., Li, K., Ma, M., Yang, M., Qiu, X., Wang, L., & Liu, Y. (2016). Rheological properties and crosslinking rheo-kinetics of CMHEC/CTAB synergists systems.
51 Liu, Q., Gao, M., Zhao, Y., Li, J., Qu, C., Zhang, J., & Chen, G. (2020). Synthesis and interface activity of a new quaternary ammonium surfactant as an oil/gas field chemical.
52 Liu, Q., Gao, M., Zhang, J., Zhang, R., Li, J., Chen, S., & Chen, G. (2020). Synthesis and interface activity of cetyltrimethylammonium benzoate.