Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20210005
Polímeros: Ciência e Tecnologia
Original Article

Antimicrobial activity of silver composites obtained from crosslinked polystyrene with polyHIPE structures

Roberta Trovão Santos; Nathália Smith Santos; Mirian Araújo de Oliveira; Fernanda de Andrade Buás Campeão; Maria Aparecida Larrubia Granado Moreira Rodrigues Mandu; Mônica Regina Costa Marques; Luciana da Cunha Costa

Downloads: 0
Views: 530

Abstract

The literature reports several potential applications of polymers prepared with high internal phase emulsions (HIPEs). However, the evaluation of these materials as supports for antimicrobial agents has not been explored. In this work, silver composites based on polyHIPEs were prepared. Initial studies indicated that these materials can be efficient to prevent biofilm formation. The silver composites were prepared in three steps. First, HIPEs based on styrene-divinylbenzene were polymerized by aqueous suspension polymerization. These particles showed surface areas of 18 and 48 m2/g. These polyHIPEs were sulfonated with concentrated sulfuric acid or acetyl sulfate and showed cation exchange capacities of 4.03 and 5.07 meq/g respectively. The sulfonated material was impregnated with silver ions, followed by reduction of the ions to prepare silver composites. These composites showed inhibition halos against E. coli and P. aeruginosa. and did not present adhesion of bacterial cells of K. variicola and S. aureus on their surface.

Keywords

high internal phase emulsions, polyHIPEs, silver composites, styrene-divinylbenzene copolymers, biocidal polymers

References

1 Gokmen, M. T., & Prez, F. E. (2012). Porous polymer particles - a comprehensive guide to synthesis, characterization, functionalization and applications. Progress in Polymer Science, 37(3), 365-405. http://dx.doi.org/10.1016/j.progpolymsci.2011.07.006.

2 Hainey, P., Huxham, I. M., Rowatt, B., Sherrington, D. C., & Tetley, L. (1991). Synthesis and ultrastructural studies of styrene-divinylbenzene Polyhipe polymers. Macromolecules, 24(1), 117-121. http://dx.doi.org/10.1021/ma00001a019.

3 Cameron, N. R., & Sherrington, D. C. (1996). High internal phase emulsions (HIPEs) Structure, properties and use in polymer preparation. In A. Abe, A. Albertsson, G. W. Coates, J. Genzer, S. Kobayashi, K. Lee, L. Leibler, T. E. Long, M. Möller, O. Okay, V. Percec, B. Z. Tang, E. M. Terentjev, P. Theato, B. Voit, U. Wiesner, & X. Zhang (Eds.), Advances in Polymer Science: Biopolymers Liquid Crystalline Polymers Phase Emulsion (pp. 163-213). Berlin: Springer.

4 Desforges, A., Arpontet, M., Deleuze, H., & Mondain-Monval, O. (2002). Synthesis and functionalization of polyHIPE beads. Reactive & Functional Polymers, 53(2-3), 183-192. http://dx.doi.org/10.1016/S1381-5148(02)00172-4.

5 Štefanec, D., & Krajnc, P. (2005). 4-Vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsions. Reactive & Functional Polymers, 65(1-2), 37-45. http://dx.doi.org/10.1016/j.reactfunctpolym.2005.01.007.

6 Štefanec, D., & Krajnc, P. (2007). Aryl acrylate porous functional polymer supports from water-in-oil-in-water multiple emulsions. Polymer International, 56(10), 1313-1319. http://dx.doi.org/10.1002/pi.2292.

7 Yang, Y., Liao, H., Tong, Z., & Wang, C. (2015). Porous Ag/polymer composite microspheres for adsorption and catalytic degradation of organic dyes in aqueous solutions. Composites Science and Technology, 107, 137-144. http://dx.doi.org/10.1016/j.compscitech.2014.12.015.

8 Mert, E. H., & Hildirim, H. (2014). Porous functional poly(unsaturated polyester-coglycidyl methacrylate-co-divinylbenzene) polyHIPE beads through w/o/w multiple emulsions: preparation, characterization and application. e-Polymers, 14(1), 65-73. https://doi.org/10.1515/epoly-2013-0071 .

9 Cui, X., Shao, H., Song, Y., Yang, S., Wang, F., & Liu, H. (2019). Preparation of highly interconnected porous polymer microbeads via suspension polymerization of high internal phase emulsions for fast removal of oil spillage from aqueous environments. RSC Advances, 9(44), 25730-25738. http://dx.doi.org/10.1039/C9RA05220H.

10 Torquato, E. C. C., Brito, A. P. N., Trovão, R. S., Oliveira, M. A., Smith, N. S., Pinto, M. C. C., Pinto, J. C., Cipolatti, E. P., Freire, D. M. G., Marques, M. R. C., & Costa, L. C. (2020). Synthesis of porous polymeric supports with polyHIPE structures based on styrene-divinylbenzene copolymers. Macromolecular Symposia, 394(1), 2000109. http://dx.doi.org/10.1002/masy.202000109.

11 Li, N., & Benson, J. R. (1996). US Patent No 5583162A. Washington: U.S. Patent and Trademark Office. Retrieved in 2021, September 06, from https://patents.google.com/patent/US5583162A/en

12 Kitagawa, N. (2000) US Patent No 6048908A. Washington: U.S. Patent and Trademark Office. Retrieved in 2021, September 06, from https://patents.google.com/patent/US6048908A/en

13 Li, N., Benson, J. R., & Kitagawa, N. (2000). US Patent No 6100306A. Washington: U.S. Patent and Trademark Office. Retrieved in 2021, September 06, from https://patents.google.com/patent/US6100306A/en

14 Kitagawa, N. (2001) US Patent No 6218440B1. Washington: U.S. Patent and Trademark Office. Retrieved in 2021, September 06, from https://patents.google.com/patent/US6218440B1/en

15 Koler, A., Paljevac, M., Cmager, N., Iskra, J., Kolar, M., & Krajnc, P. (2017). Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer, 126, 402-407. http://dx.doi.org/10.1016/j.polymer.2017.04.051.

16 He, H., Li, W., Lamson, M., Zhong, M., Konkolewicz, D., Hui, C. M., Yaccato, K., Rappold, T., Sugar, G., David, N. E., Damodaran, K., Natesakhawat, S., Nulwala, H., & Matyjaszewski, K. (2014). Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. Polymer, 55(1), 385-394. http://dx.doi.org/10.1016/j.polymer.2013.08.002.

17 Su, R., Ruan, G., Nie, H., Xie, T., Zheng, Y., Du, F., & Li, J. (2015). Development of high internal phase emulsion polymeric monoliths for highly efficient enrichment of trace polycyclic aromatic hydrocarbons from large-volume water samples. Journal of Chromatography. A, 1405, 23-31. http://dx.doi.org/10.1016/j.chroma.2015.05.067. PMid:26077972.

18 Ruan, G., Wu, Z., Huang, Y., Wei, M., Su, R., & Du, F. (2016). An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions. Biochemical and Biophysical Research Communications, 473(1), 54-60. http://dx.doi.org/10.1016/j.bbrc.2016.03.049. PMid:26995089.

19 Costa, L. C., Mandu, M. A. L. G. M. R., Santa Maria, L. C., & Marques, M. R. C. (2015). Resinas poliméricas reticuladas com ação biocida: atual estado da arte. Polímeros: Ciência e Tecnologia, 25(4), 414-423. http://dx.doi.org/10.1590/0104-14281739.

20 Mandu, M. A. L. G. M. R., Costa, L. C., Tiosso, R. B., Grasso, R. P., & Calderari, M. R. C. M. (2019). Evaluation of antimicrobial action of silver composite microspheres based on styrene-divinylbenzene copolymer. Polímeros. Polímeros: Ciência e Tecnologia, 29(4), e2019052. http://dx.doi.org/10.1590/0104-1428.00219.

21 Gangadharan, D., Harshvardan, K., Gnanasekar, G., Dixit, D., Popat, K. M., & Anand, P. S. (2010). Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Research, 44(18), 5481-5487. http://dx.doi.org/10.1016/j.watres.2010.06.057. PMid:20673945.

22 Maria, L. C. S., Oliveira, R. O., Mercon, F., Borges, M. E. R. S. P., Barud, H. S., Ribeiro, S. J. L., Messaddeq, Y., & Wang, S. H. (2010). Preparation and bactericidal effect of composites based on crosslinked copolymers containing silver nanoparticles. Polímeros: Ciência e Tecnologia, 20(3), 227-230. http://dx.doi.org/10.1590/S0104-14282010005000028.

23 Mthombeni, N. H., Mpenyana-Monyatsi, L., Onyango, M. S., & Momba, M. N. B. (2012). Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column. Journal of Hazardous Materials, 217-218, 133-140. http://dx.doi.org/10.1016/j.jhazmat.2012.03.004. PMid:22459979.

24 Ottens, M., Leene, G., Beenackers, A. A. C. M., Cameron, N., & Sherrington, D. C. (2000). PolyHipe: a new polymeric support for heterogeneous catalytic reactions: kinetics of hydration of cyclohexene in two- and three-phase systems over a strongly acidic sulfonated polyHipe. Industrial & Engineering Chemistry Research, 39(2), 259-266. http://dx.doi.org/10.1021/ie990452o.

25 Cohen, N., Samoocha, D. C., David, D., & Silverstein, M. S. (2013). Carbon nanotubes in emulsion-templated porous polymers: polymer nanoparticles, sulfonation, and conductivity. Journal of Polymer Science. Part A, Polymer Chemistry, 51(20), 4369-4377. http://dx.doi.org/10.1002/pola.26851.

26 Cameron, N. R., Sherrington, D. C., Ando, I., & Kurosu, H. (1996). Chemical modification of monolithic poly(styrene–divinylbenzene) polyHIPE® materials. Journal of Materials Chemistry, 6(5), 719-726. http://dx.doi.org/10.1039/JM9960600719.

27 Rezende, S. M. (2006). Desenvolvimento de catalisadores poliméricos com grupos ativos sulfônicos (Doctoral thesis). Universidade Federal do Rio de Janeiro, Rio de Janeiro.

28 Oliveira, A. J. B., Aguiar, A. P., Aguiar, M. R. M. P., & Maria, L. C. S. (2005). How to maintain the morphology of styrene-divinylbenzene copolymer beads during the sulfonation reaction. Materials Letters, 59(8-9), 1089-1094. http://dx.doi.org/10.1016/j.matlet.2004.12.014.

29 Santos, A. L. C. (2009). Síntese, caracterização e avaliação de materiais poliméricos com propriedades bactericidas (Master's dissertation). Universidade do Estado do Rio de Janeiro, Rio de Janeiro.

30 American Society for Testing and Materials – ASTM. (1975). ASTM D 1895-69: Annual Book of ASTM. West Conshohocken: ASTM.

31 Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for Gas/Solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. http://dx.doi.org/10.1351/pac198557040603.

32 Reis, S. C. M., Lachter, E. R., Nascimento, R. S. V., Rodrigues, J. A., Jr., & Reid, M. G. (2005). Transesterification of Brazilian vegetable oils with methanol over ion-exchange resins. Journal of the American Oil Chemists’ Society, 82(9), 661-665. http://dx.doi.org/10.1007/s11746-005-1125-y.

33 Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. http://dx.doi.org/10.1093/ajcp/45.4_ts.493. PMid:5325707.

34 Budhlall, B. M., Landfester, K., Sudol, E. D., Dimonie, V. L., Klein, A., & El-Aasser, M. S. (2003). Characterization of partially hydrolyzed poly(vinyl alcohol). Effect of poly(vinyl alcohol) molecular architecture on aqueous phase conformation. Macromolecules, 36(25), 9477-9484. http://dx.doi.org/10.1021/ma030027d.

35 Okay, O. (2000). Macroporous copolymer networks. Progress in Polymer Science, 25(6), 711-779. http://dx.doi.org/10.1016/S0079-6700(00)00015-0.

36 Zheng, Y., Wang, Q., Yang, C., & Qiu, T. (2019). Experimental study on mass transport mechanism in poly (styrene-co-divinylbenzene) microspheres with hierarchical pore structure. Chemical Engineering and Processing - Process Intensification, 139, 183-192. https://doi.org/10.1016/j.cep.2019.03.016.

37 Coutinho, F. M. B., Rezende, S. M., & Soares, B. G. (2006). Characterization of sulfonated Poly(styrene–divinylbenzene) and Poly(divinylbenzene) and its application as catalysts in esterification reaction. Journal of Applied Polymer Science, 102(4), 3616-3627. http://dx.doi.org/10.1002/app.24046.

38 Simplicio, S., Lucas, E. F., Costa, M. A. S., Costa, L. C., & Maria, L. C. S. (2014). Thermal resistance of magnetic polymeric composites based on styrene, divinylbenzene and Ni and Co particles. Journal of Thermal Analysis and Calorimetry, 117(1), 369-375. http://dx.doi.org/10.1007/s10973-014-3703-9.

39 Aguiar, V. M., Souza, A. L. F., Galdino, F. S., Silva, M. M. C., Teixeira, V. G., & Lachter, E. R. (2017). Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids. Renewable Energy, 114, 725-732. http://dx.doi.org/10.1016/j.renene.2017.07.084.

40 Rezende, S. M., Reis, M. C., Reid, M. G., Silva, P. L., Jr., Coutinho, F. M. B., San Gil, R. A. S., & Lachter, E. R. (2008). Transesterification of vegetable oils promoted by poly(styrene-divinylbenzene) and poly(divinylbenzene). Applied Catalysis A, General, 349(1-2), 198-203. http://dx.doi.org/10.1016/j.apcata.2008.07.030.

41 Andrijanto, E., Dawson, E. A., & Brown, D. R. (2012). Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis. Applied Catalysis B: Environmental, 115-116, 261-268. http://dx.doi.org/10.1016/j.apcatb.2011.12.040.
 

61eaece1a953954a1122d673 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections