Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film

Kimura, Vanessa Tiemi; Miyasato, Cintia Satiyo; Genesi, Bianca Pereira; Lopes, Patrícia Santos; Yoshida, Cristiana Maria Pedroso; Silva, Classius Ferreira da

Downloads: 1
Views: 724


Chitosan film is used as a dressing to heal burns. The physical and biological properties of the film can be modified by the addition of phytotherapic compounds. This work used the casting -solvent evaporation technique to prepare chitosan film containing andiroba oil (Carapa guianensis) which has anti-inflammatory, antibiotic, and healing properties. The objective of this study was to determine the effect of the concentrations of chitosan and andiroba oil on the physical properties of chitosan films. The emulsion films were evaluated concerning the mechanical properties and fluid handling capacity. Additionally, scanning electron microscopy and thermal analysis were performed. The results showed that the barrier and mechanical properties were affected by the addition of andiroba oil, and these may be modulated as a function of the concentration of oil added to the film. The thermal analysis showed no evidence of chemical interactions between the oil and chitosan.


biopolymers, dressings, Carapa guianensis.


1. Tanaka, Y., Sakamoto, A., Inoue, T., Yamada, T., Kikuchi, T., Kajimoto, T., Muraoka, O., Sato, A., Wataya, Y., Kim, H. S., & Tanaka, R. (2012). Andirolides H-P from the flower of andiroba (Carapa guianensis, Meliaceae). Tetrahedron, 68(18), 3669-3677. http://dx.doi.org/10.1016/j.tet.2011.12.076.

2. Sakamoto, A., Tanaka, Y., Inoue, T., Kikuchi, T., Kajimoto, T., Muraoka, O., Yamada, T., & Tanaka, R. (2013). Andirolides Q-V from the flower of andiroba (Carapa guianensis, Meliaceae). Fitoterapia, 90, 20-29. http://dx.doi.org/10.1016/j.fitote.2013.07.001. PMid:23850542.

3. Nayak, B. S., Kanhai, J., Milne, D. M., Swanston, W. H., Mayers, S., Eversley, M., & Rao, A. V. C. (2010). Investigation of the wound healing activity of Carapa guianensis L. (Meliaceae) bark extract in rats using excision, incision, and dead space wound models. Journal of Medicinal Food, 13(5), 1141-1146. http://dx.doi.org/10.1089/jmf.2009.0214. PMid:20828307.

4. Nayak, B. S., Kanhai, J., Milne, D. M., Pereira, L. P., & Swanston, W. H. (2011). Experimental evaluation of ethanolic extract of Carapa guianensis L. leaf for its wound healing activity using three wound models. Evidence-Based Complementary and Alternative Medicine, (419612), 6. http://dx.doi.org/10.1093/ecam/nep160

5. Miranda, R. N. C., Jr., Dolabela, M. F., Silva, M. N., Póvoa, M. M., & Maia, J. G. S. (2012). Antiplasmodial activity of the andiroba (Carapa guianensis Aubl., Meliaceae) oil and its limonoid-rich fraction. Journal of Ethnopharmacology, 142(3), 679-683. http://dx.doi.org/10.1016/j.jep.2012.05.037. PMid:22659195.

6. Ferraris, F. K., Rodrigues, R., Silva, V. P., Figueiredo, R., Penido, C., & Henriques, M. G. M. O. (2011). Modulation of T lymphocyte and eosinophil functions in vitro by natural tetranortriterpenoids isolated from Carapa guianensis Aublet. International Immunopharmacology, 11(1), 1-11. http://dx.doi.org/10.1016/j.intimp.2010.09.010. PMid:20951667.

7. Penido, C., Costa, K. A., Pennaforte, R. J., Costa, M. F. S., Pereira, J. F. G., Siani, A. C., & Henriques, M. G. M. O. (2005). Anti-allergic effects of natural tetranortriterpenoids isolated from Carapa guianensis Aublet on allergen-induced vascular permeability and hyperalgesia. Inflammation Research, 54(7), 295-303. http://dx.doi.org/10.1007/s00011-005-1357-6. PMid:16134059.

8. Cabral, E. C., Cruz, G. F., Simas, R. C., Sanvido, G. B., Gonçalves, L. V., Leal, R. V. P., Silva, R. C. F., Silva, J. C. T., Barata, L. E. S., Cunha, V. S., França, L. F., Daroda, R. J., Sá, G. F., & Eberlin, M. N. (2013). Typification and quality control of the andiroba (Carapa guianensis) oil via mass spectrometry fingerprinting. Analytical Methods, 5, 1385-1391. http://dx.doi.org/10.1039/c3ay25743f.

9. Tappin, M. R. R., Nakamura, M. J., Siani, A. C., & Lucchetti, L. (2008). Development of an HPLC method for the determination of tetranortriterpenoids in Carapa guianensis seed oil by experimental design. Journal of Pharmaceutical and Biomedical Analysis, 48(4), 1090-1095. http://dx.doi.org/10.1016/j.jpba.2008.08.027. PMid:18845411.

10. Vendramini, M. C. R., Mathias, M. I. C., Faria, A. U., Furquim, K. C. S., Souza, L. P., Bechara, G. H., & Roma, G. C. (2012). Action of andiroba oil (Carapa guianensis) on Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged females: morphophysiological evaluation of reproductive system. Microscopy Research and Technique, 75(12), 1745-1754. http://dx.doi.org/10.1002/jemt.22126. PMid:22972770.

11. Silva, O. S., Prophiro, J. S., Nogared, J. C., Kanis, L., Emerick, S., Blazius, R. D., & Roma, P. R. T. (2006). Larvicidal effect of andiroba oil, Carapa guianensis (Meliaceae), against Aedes aegypti. Journal of the American Mosquito Control Association, 22(4), 699-701. http://dx.doi.org/10.2987/8756-971X(2006)22[699:LEOAOC]2.0.CO;2. PMid:17304939.

12. Penido, C., Conte, F. P., Chagas, M. S. S., Rodrigues, C. A. B., Pereira, J. F. G., & Henriques, M. G. M. O. (2006). Antiinflammatory effects of natural tetranortriterpenoids isolated from Carapa guianensis Aublet on zymosan-induced arthritis in mice. Inflammation Research, 55(11), 457-464. http://dx.doi.org/10.1007/s00011-006-5161-8. PMid:17122962.

13. Ferraris, F. K., Moret, K. H., Figueiredo, A. B. C., Penido, C., & Henriques, M. G. M. O. (2012). Gedunin, a natural tetranortriterpenoid, modulates T lymphocyte responses and ameliorates allergic inflammation. International Immunopharmacology, 14(1), 82-93. http://dx.doi.org/10.1016/j.intimp.2012.06.002. PMid:22709475.

14. Penido, C., Costa, K. A., Costa, M. F. S., Pereira, J. F. G., Siani, A. C., & Henriques, M. G. M. O. (2006). Inhibition of allergen-induced eosinophil recruitment by natural tetranortriterpenoids is mediated by the suppression of IL-5, CCL11/eotaxin and NFkappaB activation. International Immunopharmacology, 6(2), 109-121. http://dx.doi.org/10.1016/j.intimp.2005.07.011. PMid:16399616.

15. Alemdaroğlu, C., Değim, Z., Çelebi, N., Zor, F., Öztürk, S., & Erdoğan, D. (2006). An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 32(3), 319-327. http://dx.doi.org/10.1016/j.burns.2005.10.015. PMid:16527411.

16. Muzzarelli, A. A. (1989). Amphoteric derivatives of chitosan and their biological significance. In G. Skjak-Braek, T. Anthonsen & P. Sandford (Eds.), Chitin and Chitosan (pp. 87-99). London: Elsevier.

17. Balassa, L. L., & Prudden, J. F. (1984). Applications of chitin and chitosan in wound healing acceleration. In J. P. Zikakis (Ed.), Chitin, chitosan and related enzymes (pp. 296-305). San Diego: Academic Press.

18. Paul, W., & Sharma, C. (2004). Chitosan and alginate wound dressings: a short review. Trends in Biomaterials & Artificial Organs, 18, 18-23.

19. Bonilla, J., Vargas, M., Atarés, L., & Chiralt, A. (2011). Physical properties of chitosan-basil essential oil edible films as affected by oil content and homogenization conditions. Procedia Food Science, 1, 50-56. http://dx.doi.org/10.1016/j.profoo.2011.09.009.

20. Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26(1), 9-16. http://dx.doi.org/10.1016/j.foodhyd.2011.03.015.

21. Pereda, M., Amica, G., & Marcovich, N. E. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(2), 1318-1325. http://dx.doi.org/10.1016/j.carbpol.2011.09.019.

22. Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. http://dx.doi.org/10.1016/j.jfoodeng.2010.01.026.

23. British Standards Institute – BSI. (2002). BS EN 13726-1:2002: test methods for primary wound dressings. Part 1: Aspects of Absorbency, section 3.3 Fluid Handling Capacity. London: BSI.

24. American Society for Testing and Materials – ASTM. (1995). ASTM D882-95: standard test method for tensile properties of thin plastic sheeting. Philadelphia: ASTM. pp. 182-188.

25. Instituto de Desenvolvimento Sustentável Mamirauá. (2014). BioEstat 5.3. Tefé. Retrieved in 25 Feb. 2014, de http://www.mamiraua.org.br/pt-br/downloads/programas/

26. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49(3), 378-384. http://dx.doi.org/10.1016/j.ijbiomac.2011.05.013. PMid:21640752.

27. Estevam, L. S., Debone, H. S., Yoshida, C. M. P., & Silva, C. F. (2012) Adsorption of bovine serum and bovine haemoglobin onto chitosan film. Adsorption Science and Technology, 30(8-9), 785-792.

28. Pereda, M., Aranguren, M. I., & Marcovich, N. E. (2010). Caseinate films modified with tung oil. Food Hydrocolloids, 24(8), 800-808. http://dx.doi.org/10.1016/j.foodhyd.2010.04.007.

29. Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids, 23(8), 2102-2109. http://dx.doi.org/10.1016/j.foodhyd.2009.05.006.

30. Kokoszka, S., Debeaufort, F., Lenart, A., & Voilley, A. (2010). Liquid and vapor water transfer through whey protein/lipid emulsion films. Journal of the Science of Food and Agriculture, 90(10), 1673-1680. http://dx.doi.org/10.1002/jsfa.4001. PMid:20564446.

31. Thomas, S., & Young, S. (2008). Exudate-handling mechanisms of two foam-film dressings. Journal of Wound Care, 17(7), 309-315. http://dx.doi.org/10.12968/jowc.2008.17.7.30524. PMid:18705233.

32. Lamke, L. O., Nilsson, G. E., & Reithner, H. L. (1977). The evaporative water loss from burns and water vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns, 3(3), 159-165. http://dx.doi.org/10.1016/0305-4179(77)90004-3.

33. Pelissari, F. M., Grossmann, M. V. E., Yamashita, F., & Pineda, E. A. G. (2009). Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499-7504. http://dx.doi.org/10.1021/jf9002363. PMid:19627142.

34. Javanmard, M., & Golestan, L. (2008). Effect of olive oil and glycerol on physical properties of whey protein concentrate films. Journal of Food Process Engineering, 31(5), 628-639. http://dx.doi.org/10.1111/j.1745-4530.2007.00179.x.

35. Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT - Food Science and Technology, 38, 859-865. http://dx.doi.org/10.1016/j.lwt.2004.09.014.

36. Zivanovic, S., Chi, S., & Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70(1), M45-M51. http://dx.doi.org/10.1111/j.1365-2621.2005.tb09045.x.

37. Saraiva, S. A., Cabral, E. C., Eberlin, M. N., & Catharino, R. R. (2009). Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. Journal of Agricultural and Food Chemistry, 57(10), 4030-4034. http://dx.doi.org/10.1021/jf900043u. PMid:19358529.

38. Matos, F. C. (2012). Study of thermal decomposition of fatty acids through differential scanning calorimetry (Master’s dissertation). Universidade Estadual de Campinas, Campinas.
588371d57f8c9d0a0c8b4aa5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections