Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Efeito do armazenamento sobre a cor de filmes de quitosana

Effect of the storage on the color of chitosan films

Bohórquez, Nathalia Valderrama; Enciso, Néstor Ariel Algecira; Hernández, William Albaracín

Downloads: 1
Views: 635


Este trabalho teve como objetivo determinar o efeito da inclusão de óleos essenciais (EOs) e do armazenamento na cor dos filmes de quitosana (CH) para os parâmetros de L*, a*, b* e ΔE. Os óleos essenciais de tomilho (TEO) e alecrim (REO) foram incluídos em concentrações de 0,5:1 e 1:1 p/p (EOs:CH), assim como suas combinações 50/50 (TEO:REO). Os filmes foram armazenados a temperaturas de 5 °C, 20 °C e, 33 °C e umidade relativa do ar de 60%, 75% e, 93% durante quatro semanas. Os parâmetros da cor foram determinados por refletância com componente especular incluído (RSIN) e por refletância com componente especular excluído (RSEX), usando seis padrões de fundos diferentes. A inclusão e o aumento da concentração de óleos essenciais, assim como o aumento do tempo, da temperatura e da umidade e o padrão de fundo alteraram os valores das variáveis resposta.


aditivos alimentares, polímeros modificados, quitosana.


The aim of this study was to determine the effect of the thyme and rosemary essential oils (EOs) inclusion and the storage on the chitosan (CH) films color for the parameters L*, a*, b* and ΔE. The thyme (TEO) and rosemary (REO) essential oils were included in 0,5:1 and 1:1 p/p (EOs:CH), as well as their combination 50/50 (TEO:REO). The films were stored at temperatures of 5 °C, 20 °C and 33 °C and relative humidity of 60%, 75% and 93% during four weeks. The colour parameters were determined by reflectance with included specular component (RSIN) and reflectance with excluded specular component (RSEX) using six different standard backdrops. Most of the results provides that the standard backdrops, the inclusion and the increasing concentration of the essential oils, as well as the time, temperature and humidity influenced the response of the variables.


food additives, modified polymers, chitosan.


1. Dutta, J., Tripathi, S., & Dutta, P. K. (2012). Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Science & Technology International, 18(1), 3-34. http://dx.doi.org/10.1177/1082013211399195. PMid:21954316.

2. Kenawy, R., Worley, S. D., & Broughton, R. (2007). The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules, 8(5), 1359-1384. http://dx.doi.org/10.1021/bm061150q. PMid:17425365.

3. Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144(1), 51-63. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012. PMid:20951455.

4. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-1465. http://dx.doi.org/10.1021/bm034130m. PMid:14606868.

5. Cunha, A. G., & Gandini, A. (2010). Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose, 17(6), 1045-1065. http://dx.doi.org/10.1007/s10570-010-9435-5.

6. Moradi, M., Tajik, H., Rohani, S. M. R., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT - Food Science and Technology, 46(2), 477-484. http://dx.doi.org/10.1016/j.lwt.2011.11.020.

7. Altiok, D., Altiok, E., & Tihminlioglu, F. (2010). Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Materials Science: Materials in Medicine, 21(7), 2227-2236. http://dx.doi.org/10.1007/s10856-010-4065-x. PMid:20372985.

8. Du, W. X., Olsen, C. W., Avena-Bustillos, R. J., Friedman, M., & McHugh, T. H. (2011). Physical and antibacterial properties of edible films formulated with apple skin polyphenols. Journal of Food Science, 76(2), M149-M155. http://dx.doi.org/10.1111/j.1750-3841.2010.02012.x. PMid:21535779.

9. Sanchez-Gonzalez, L., Chiralt, A., Gonzalez-Martinez, C., & Chafer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246-253. http://dx.doi.org/10.1016/j.jfoodeng.2011.02.028.

10. Zhong, Y., & Li, Y. F. (2011). Effects of storage conditions and acid solvent types on structural, mechanical and physical properties of kudzu starch (Pueraria lobata)-chitosan composite films. Starch, 63(9), 579-586. http://dx.doi.org/10.1002/star.201100019.

11. Caner, C., Vergano, P. J., & Wiles, J. L. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. Journal of Food Science, 63(6), 1049-1053. http://dx.doi.org/10.1111/j.1365-2621.1998.tb15852.x.

12. Kerch, G., & Korkhov, V. (2011). Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. European Food Research and Technology, 232(1), 17-22. http://dx.doi.org/10.1007/s00217-010-1356-x.

13. Suyatma, N. E., Tighzert, L., Copinet, A., & Coma, V. (2005). Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry, 53(10), 3950-3957. http://dx.doi.org/10.1021/jf048790+. PMid:15884822.

14. Nud’ga, L., Petrova, V., Gofman, I., Abalov, I., Volchek, B., Vlasova, E., & Baklagina, Y. (2008). Chemical and structural transformations in chitosan films in the course of storage. Russian Journal of Applied Chemistry, 81(11), 1992-1996. http://dx.doi.org/10.1134/S1070427208110244.

15. Artharn, A., Prodpran, T., & Benjakul, S. (2009). Round scad protein-based film: Storage stability and its effectiveness for shelf-life extension of dried fish powder. Lwt-. Journal of Food Science and Technology, 42(7), 1238-1244. http://dx.doi.org/10.1016/j.lwt.2008.08.009.

16. Vasilatos, G. C., & Savvaidis, I. N. (2013). Chitosan or rosemary oil treatments, singly or combined to increase turkey meat shelf-life. International Journal of Food Microbiology, 166(1), 54-58. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.06.018. PMid:23827808.

17. Giatrakou, V., Ntzimani, A., & Savvaidis, E. N. (2010). Combined chitosan-thyme treatments with modified atmosphere packaging on a ready-to-cook poultry product. Journal of Food Protection, 73(4), 663-669. PMid:20377954.

18. Caner, C. (2005). The effect of edible eggshell coatings on egg quality and consumer perception. Journal of the Science of Food and Agriculture, 85(11), 1897-1902. http://dx.doi.org/10.1002/jsfa.2185.

19. Sathivel, S. (2005). Chitosan and protein coatings affect yield, moisture loss, and lipid oxidation of pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Journal of Food Science, 70(8), E455-E459. http://dx.doi.org/10.1111/j.1365-2621.2005.tb11514.x.

20. Ansorena, M. R., Marcovich, N. E., & Roura, S. I. (2011). Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biology and Technology, 59(1), 53-63. http://dx.doi.org/10.1016/j.postharvbio.2010.08.011.

21. Sangsuwan, J., Rattanapanone, N., & Rachtanapun, P. (2008). Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Biology and Technology, 49(3), 403-410. http://dx.doi.org/10.1016/j.postharvbio.2008.02.014.

22. Hojo, E. T. D., Durigan, J. F., & Hojo, R. H. (2011). Use of plastic packaging and coverage of chitosan in the postharvest conservation of litchi. Revista Brasileira de Fruticultura, 33, 377-383. http://dx.doi.org/10.1590/S0100-29452011000500048.

23. Salvador-Figueroa, M., Aragon-Gomez, W. I., Hernandez-Ortiz, E., Vazquez-Ovando, J. A., & Adriano-Anaya, M. D. (2011). Effect of chitosan coating on some characteristics of mango (Mangifera indica L.) “Ataulfo” subjected to hydrothermal process. African Journal of Agricultural Research, 6(27), 5800-5807.

24. Chien, P. J., Sheu, F., & Yang, F. H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225-229. http://dx.doi.org/10.1016/j.jfoodeng.2005.09.022.

25. Ali, A., Muhammad, M. T. M., Sijam, K., & Siddiqui, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chemistry, 124(2), 620-626. http://dx.doi.org/10.1016/j.foodchem.2010.06.085.

26. Wardy, W., Pujols Martínez, K. D., Xu, Z., No, H. K., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67-73. http://dx.doi.org/10.1016/j.lwt.2013.07.013.

27. Hernández-Muñoz, P., Almenar, E., Valle, V. D., Velez, D., & Gavara, R. (2003). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria ananassa) quality during refrigerated storage. Journal of Food Chemestry, 110(2), 428-435. http://dx.doi.org/10.1016/j.foodchem.2008.02.020.

28. Kim, K. W., Min, B. J., Kim, Y.-T., Kimmel, R. M., Cooksey, K., & Park, S. I. (2011). Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. LWT - Food Science and Technology, 44(2), 565-569. http://dx.doi.org/10.1016/j.lwt.2010.08.001.

29. Hernandez-Ochoa, L., Gonzales–Gonzales, A., Gutiérrez–Mendez, N., Muñoz–Castellanos, L. N., & Quintero-Ramos, A. (2011). Study of the antibacterial activity of chitosan-based films prepared with different molecular weights including spices essential oils and functional extracts as antimicrobial agents. Revista Mexicana de Ingeniería Quimica, 10(3), 455-463.

30. Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2008). Using polysaccharide-based edible coatings to enhance quality and antioxidant properties of fresh-cut melon. LWT - Food Science and Technology, 41(10), 1862-1870. http://dx.doi.org/10.1016/j.lwt.2008.01.007.

31. Perez-Gago, M. B., Serra, M., & Río, M. A. (2006). Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biology and Technology, 39(1), 84-92. http://dx.doi.org/10.1016/j.postharvbio.2005.08.002.

32. Tzoumaki, M. V., Biliaderis, C. G., & Vasilakakis, M. (2007). Impact of edible coatings and packaging on quality of white asparagus (Asparagus officinalis, L.) during cold storage. Food Chemistry, 117(1), 55-63. http://dx.doi.org/10.1016/j.foodchem.2009.03.076.

33. Lee, Y. K., & Powers, M. V. (2007). Color changes of resin composites in the reflectance and transmittance modes. Dental Materials, 23(3), 259-264. http://dx.doi.org/10.1016/j.dental.2006.01.019. PMid:16519927.

34. Nakamura, T., Saito, O., Mizuno, M., Kinuta, S., & Ishigaki, S. (2003). Influence of abutment substrates on the colour of metal free polymer crowns. Journal of Oral Rehabilitation, 30(2), 184-188. http://dx.doi.org/10.1046/j.1365-2842.2003.01019.x. PMid:12535146.

35. Sánchez-Zapata, E., Fuentes-Zaragoza, E., Navarro-Rodríguez de Vera, C., Sayas, E., Sendra, E., Fernández-López, J., & Pérez-Alvarez, J. A. (2011). Effects of tuna pâté thickness and background on CIELa*b* color parameters and reflectance spectra. Food Control, 22(8), 1226-1232. http://dx.doi.org/10.1016/j.foodcont.2011.01.022.

36. Lee, Y. K., Lim, B. S., & Kim, C. W. (2005). Difference in the colour and colour change of dental resin composites by the background. Journal of Oral Rehabilitation, 32(3), 227-233. http://dx.doi.org/10.1111/j.1365-2842.2004.01402.x. PMid:15707434.

37. Srinivasa, P. C., Ramesh, M. N., Kumar, K. R., & Tharanathan, R. N. (2003). Properties and sorption studies of chitosan-polyvinyl alcohol blend films. Carbohydrate Polymers, 53(4), 431-438. http://dx.doi.org/10.1016/S0144-8617(03)00105-X.

38. Deng, Y., Zhu, L. W., Luo, W., Xiao, C. L., Song, X. Y., & Chen, J. S. (2009). Changes in physical properties of chitosan films at subzero temperatures. Italian Journal of Food Science, 21(4), 487-497.

39. Abugoch, L., Tapia, C., Villaman, M. C., Yazdani-Pedram, M., & Diaz-Dosque, M. (2011). Characterization of quinoa protein-chitosan blend edible films. Food Hydrocolloids, 25(5), 879-886. http://dx.doi.org/10.1016/j.foodhyd.2010.08.008.

40. Sánchez-González, L., Cháfer, M., Chiralt, A., & Gonzalez-Martinez, C. (2009). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277-283. http://dx.doi.org/10.1016/j.carbpol.2010.04.047.

41. Hosseini, M. H., Razavi, S. H., & Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33(6), 727-743. http://dx.doi.org/10.1111/j.1745-4549.2008.00307.x.

42. Du, W. X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., & Friedman, M. (2009). Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. Journal of Food Science, 74(7), M372-M378. http://dx.doi.org/10.1111/j.1750-3841.2009.01282.x. PMid:19895483.

43. Moradi, M., Tajik, H., Rohani, S. M. R., & Oromiehie, A. R. (2011). Effectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage. Journal of the Science of Food and Agriculture, 91(15), 2850-2857. http://dx.doi.org/10.1002/jsfa.4531. PMid:21796636.

44. Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids, 23(8), 2102-2109. http://dx.doi.org/10.1016/j.foodhyd.2009.05.006.

45. Moreno-Osorio, L., Garcia, M., & Villalobos-Carvajal, R. (2010). Effect of polygodial on mechanical, optical and barrier properties of chitosan films. Journal of Food Processing and Preservation, 34(2), 219-234. http://dx.doi.org/10.1111/j.1745-4549.2009.00373.x.

46. Fernandez-Saiz, P., Lagaron, J. M., & Ocio, M. J. (2009). Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent. Journal of Agricultural and Food Chemistry, 57(8), 3298-3307. http://dx.doi.org/10.1021/jf8037709. PMid:19281273.

47. Duan, J., Kim, K., Daeschel, M. A., & Zhao, Y. (2008). Storability of antimicrobial chitosan-lysozyme composite coating and film-forming solutions. Journal of Food Science, 73(6), M321-M329. http://dx.doi.org/10.1111/j.1750-3841.2008.00849.x. PMid:19241565.

48. Cuq, B., Gontard, N., Cuq, J.-L., & Guilbert, S. (1996). Stability of myofibrillar protein-based biopackagings during storage. LWT - Food Science and Technology, 29(4), 344-348. http://dx.doi.org/10.1006/fstl.1996.0052.

49. Hernández-Muñoz, P., López-Rubio, A., del-Valle, V., Almenar, E., & Gavara, R. (2003). Mechanical and water barrier properties of glutenin films influenced by storage time. Journal of Agricultural and Food Chemesty, 52(1), 79-83. http://dx.doi.org/10.1021/jf034763s.
588371d07f8c9d0a0c8b4a91 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections