Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1987
Polímeros: Ciência e Tecnologia
Review Article

Hidrogéis a base de ácido hialurônico e quitosana para engenharia de tecido cartilaginoso

Hyaluronic acid and chitosan based hydrogels for cartilage tissue engeneering

Nascimento, Mônica Helena Monteiro do; Lombello, Christiane Bertachini

Downloads: 5
Views: 1523

Resumo

A Engenharia de Tecidos envolve o desenvolvimento de novos materiais ou dispositivos capazes de interações específicas com os tecidos biológicos, buscando a utilização de materiais biocompatíveis que devem servir como arcabouço para o crescimento de células in vitro, organizando e desenvolvendo o tecido que posteriormente será implantado no paciente. Uma variedade de arcabouços como hidrogéis poliméricos, sintéticos e naturais, têm sido investigados para a expansão de condrócitos in vitro, visando o reparo da cartilagem lesionada. Um hidrogel de interesse particular na regeneração de cartilagem é o ácido hialurónico (AH). Trata-se de um biopolímero atraente para a fabricação de arcabouços artificiais para Engenharia de Tecidos por ser biocompatível e biodegradável. A biocompatibilidade do AH deve-se ao fato de estar presente na matriz extracelular nativa, deste modo, cria-se um ambiente propício que facilita a adesão, proliferação e diferenciação celular, além da existência de sinalização celular específica, o que contribui para a regeneração do tecido. O uso de hidrogel composto de ácido hialurónico e quitosana (QUI) também tem sido investigado em aplicações de Engenharia de Tecidos de cartilagem, com resultados promissores. Baseando-se nestas informações, o objetivo este trabalho foi investigar as alternativas disponíveis para regeneração tecidual da cartilagem e conhecer mais detalhadamente as relações entre células e biomateriais.

Palavras-chave

ácido hialurônico, biocompatibilidade, engenharia de tecidos, quitosana, cultura de células.

Abstract

Tissue Engineering involves the development of new materials or devices capable of specific interactions with biological tissues, searching the use of biocompatible materials as scaffolds for cell growth in vitro, organizing and developing tissue that is subsequently implanted into the patient. A variety of scaffolds such as polymeric hydrogels, natural and synthetic, have been investigated for the expansion of chondrocytes in vitro in order to repair the damaged cartilage. A hydrogel of particular interest in cartilage regeneration is hyaluronic acid (HA). HA are attractive biopolymers for manufacturing artificial scaffolds for Tissue Engineering, it is biocompatible and biodegradable. The biocompatibility of HA is due to the fact that it is present in native extracellular matrix, thus creates an environment, which facilitates the adhesion, proliferation and differentiation, in addition to the existence of specific cell signaling, which contributes to tissue regeneration. The use of hydrogel composed of hyaluronic acid and chitosan (CHI) has also been investigated for applications in Tissue Engineering of soft tissues, like cartilage, with promising results. Based on this information, this study aims to investigate the alternatives available for cartilage tissue regeneration and meet more detail the relationships between cells and biomaterials.

Keywords

hyaluronic acid, biocompatibility, tissue engineering, chitosan, cell culture.

References

1. Olson, A., Graver, A., & Grande, D. (2012). Scaffolds for articular cartilage repair. Journal of Long-Term Effects of Medical Implants, 22(3), 219-227. PMid:23582113. http://dx.doi.org/10.1615/JLongTermEffMedImplants.2013006556.

2. Bittencourt, R. A. C. (2008). Cultura de condrócitos para o uso terapêutico: reconstituição de cartilagem (Tese de doutorado). Universidade Estadual de São Paulo, Botucatu.

3. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920-926. PMid:8493529. http://dx.doi.org/10.1126/science.8493529.

4. Huang, S., & Fu, X. (2010). Naturally derived materials-based cell and drug delivery systems in skin regeneration. Journal of Controlled Release, 142(2), 149-159. PMid:19850093. http://dx.doi.org/10.1016/j.jconrel.2009.10.018.

5. Correia, C. R., Moreira-Teixeira, L. S., Moroni, L., Reis, R. L., Blitterswijk, C. A., Karperien, M., & Mano, J. F. (2011). Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Engineering, 17(7), 717-730. PMid:21517692. http://dx.doi.org/10.1089/ten.tec.2010.0467.

6. Danisovic, L., Varga, I., Zamborský, R., & Böhmer, D. (2012). The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Experimental Biology and Medicine, 237(1), 10-17. PMid:22156044. http://dx.doi.org/10.1258/ebm.2011.011229.

7. Xu, X., Jha, A. K., Harrington, D. A., Farach-Carson, M. C., & Jia, X. (2012). Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter, 8(12), 3280-3294. PMid:22419946. http://dx.doi.org/10.1039/c2sm06463d.

8. Yan, L. P., Wang, Y. J., Ren, L., Wu, G., Caridade, S. G., Fan, J. B., Wang, L. Y., Ji, P. H., Oliveira, J. M., Oliveira, J. T., Mano, J. F., & Reis, R. L. (2010). Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications Biomed. Materials Research, 95(2), 465-475. PMid:20648541.

9. Barbanti, S. H., Zavaglia, C., & Duek, E. (2005). Polímeros bioreabsorvíveis na engenharia de tecidos. Polímeros: Ciência e Tecnologia, 15(1), 13-21. http://dx.doi.org/10.1590/S0104-14282007000400010.

10. Multy-Agency Tissue Engineering Science – MALTES. (2013). Five Year Plan Multy-Agency Tissue Engineering Science (MALTES) Work. Recuperado em 14 de novembro de 2014, de http://www.tissueengineering.gov/tor.php

11. Pértile, R. A. N. (2007). Estudo in vitro da interação da linhagem de fibroblastos L929com membranas de celulose bacteriana para aplicações emengenharia de tecidos (Dissertação de mestrado). Universidade Federal de Santa Catarina, Florianópolis.

12. Lombello, C. B., Reis, G. M., & Cohen, M. (2003). Study on human chondrocyte culture viability for autologous transplantation in clinical application. Einstein, 1, 84-88. Recuperado em 14 de novembro de 2014, de http://www.einstein.br/biblioteca/artigos/Study%20on%20human%20original.pdf

13. Chapekar, M. S. (2000). Tissue engineering: challenges and opportunities. Journal of Biomedical Materials Research, 53(6), 617-620. PMid:11074418. http://dx.doi.org/10.1002/1097-4636(2000)53:6<617::AID-JBM1>3.0.CO;2-C.

14. Oréfice, R. L., Pereira, M. M., Mansur, S. M. (2006). Biomateriais: fundamentos e aplicações. Rio de Janeiro: Cultura Médica.

15. Chiu, L. L. Y., Chu, Z., & Radisic, M. (2011). Comprehensive nanoscience and technology. Amsterdam: Academic Press.

16. Williams, D. F. (1987). Definitions in biomaterials: consensus Conference ESB. Amsterdam: Elsevier.

17. Lombello, C. B., Malmonge, S. M., & Wada, M. L. (2000). PolyHEMA and polyHEMA-poly(MMA-co-AA) as substrates for culturing Vero cells. Journal of Materials Science. Materials in Medicine, 11(9), 541-546. PMid:15348383. http://dx.doi.org/10.1023/A:1008915801187.

18. Santos, A. R. Jr, & Wada, M. L. F. (2007). Polímeros biorreabsorvíveis como substrato para cultura de células e engenharia tecidual. Polímeros: Ciência e Tecnologia, 17(4), 308-317. http://dx.doi.org/10.1590/S0104-14282007000400010.

19. Chang, C. H., Lin, F. H., Kuo, T. F., & Liu, H. C. (2005). Cartilage tissue engineering. Biomedical Engineering Applications Basis and Communications, 17(2), 1-11. PMid:16278014. http://dx.doi.org/10.4015/S101623720500010X.

20. Muschler, G. F., Nakamoto, C., & Griffith, L. G. (2004). Engineering principles of clinical cell-based tissue engineering. Journal of Bone and Joint Surgery American, 86(7), 1541-1558. PMid:15252108.

21. Hench, L. L., & Jones, J. R. (2005). Biomaterials, artificial organs and tissue engineering. Florida: Woodhead Pub. Ltd.

22. Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. PMid:16003400. http://dx.doi.org/10.1038/nmat1421.

23. Carletti, E., Motta, A., & Migliaresi, C. (2011). Scaffolds for tissue engineering and 3D cell culture. Methods in Molecular Biology (Clifton, N.J.), 695, 17-39. PMid:21042963. http://dx.doi.org/10.1007/978-1-60761-984-0_2.

24. Cunha, C., Panseri, S., & Antonini, S. (2011). Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine; Nanotechnology, Biology, and Medicine, 7(1), 50-59. PMid:20692373. http://dx.doi.org/10.1016/j.nano.2010.07.004.

25. Zhang, X., Reagan, M. R., & Kaplan, D. L. (2009). Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews, 61(12), 988-1006. PMid:19643154. http://dx.doi.org/10.1016/j.addr.2009.07.005.

26. Vert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. http://dx.doi.org/10.1351/PAC-REC-10-12-04.

27. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941-2953. PMid:18440630. http://dx.doi.org/10.1016/j.biomaterials.2008.04.023.

28. Elias, C. N., Vasconcellos, V. S. L., & Resende, C. R. S. (2012). Análise dos mecanismos celulares durante a osseointegração dos implantes. In Anais do VII Congresso Latino-Americano de Orgãos Artificiais e Biomateriais (pp. 1-28). São Paulo: Metallum.

29. Fortier, L. A., Barker, J. U., Strauss, E. J., Mccarrel, T. M., & Cole, B. J. (2011). The role of growth factors in cartilage repair. Clinical Orthopaedics and Related Research, 469(10), 2706-2715. PMid:21403984. http://dx.doi.org/10.1007/s11999-011-1857-3.

30. Kuo, C. K., Lia, W., Mauck, R. L., & Tuan, R. S. (2006). Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology, 18(1), 64-73. PMid:16344621. http://dx.doi.org/10.1097/01.bor.0000198005.88568.df.

31. Lydon, M. J., Minett, T. W., & Tighe, B. J. (1985). Cellular interactions with synthetic polymer surfaces in culture. Biomaterials, 6(6), 396-402. PMid:4084641. http://dx.doi.org/10.1016/0142-9612(85)90100-0.

32. Dewez, J. L., Lhoest, J. B., Detrait, E., Berger, V., Dupont-Gillain, C. C., Vincent, L. M., Schneider, Y. J., Bertrand, P., & Rouxhet, P. G. (1998). Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials, 19(16), 1441-1445. PMid:9794515. http://dx.doi.org/10.1016/S0142-9612(98)00055-6.

33. Junqueira, L. C., & Carneiro, J. (2013). Histologia básica. Rio de Janeiro: Guanabara.

34. Tibbitt, M. W., & Anseth, K. S. (2009). Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering, 103(4), 655-663. PMid:19472329. http://dx.doi.org/10.1002/bit.22361.

35. Vakonakis, I., & Campbell, I. D. (2007). Extracellular matrix: from atomic resolution to ultrastructure. Current Opinion in Cell Biology, 19(5), 578-583. PMid:17942296. http://dx.doi.org/10.1016/j.ceb.2007.09.005.

36. Gil, L. M., Ladeira, T. C., Menezes, G. C., & Silva, F. F. C. (2009). A interface célula-matriz extracelular-biomaterial e a biocompatibilidade de implantes de titânio. Innovation Implant Journal, 4(3), 58-64. Recuperado em 14 de novembro de 2014, de http://hdl.handle.net/10926/1894

37. Pedersen, J. A., & Swartz, M. A. (2005). Mechanobiology in the third dimension. Biomedical Engineering, 33(11), 1469-1490. PMid:16341917.

38. Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7), 667-681. PMid:10711964. http://dx.doi.org/10.1016/S0142-9612(99)00242-2.

39. Clem, W. C., Chowdhury, S., Catledge, S. A., Weimer, J. J., Shaikh, F. M., Hennessy, K. M., Konovalov, V. V., Hill, M. R., Waterfeld, A., Bellis, S. L., & Vohra, Y. K. (2008). Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials, 29(24-25), 3461-3468. PMid:18490051. http://dx.doi.org/10.1016/j.biomaterials.2008.04.045.

40. Gumbiner, B. M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84(3), 345-357. PMid:8608588. http://dx.doi.org/10.1016/S0092-8674(00)81279-9.

41. Lo, C. M., Wang, H. B., Dembo, M., & Wang, Y. L. (2000). Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79(1), 144-152. PMid:10866943. http://dx.doi.org/10.1016/S0006-3495(00)76279-5.

42. Pal, K., Banthia, A. K., & Majumdar, D. K. (2009). Polymeric hydrogels: characterization and biomedical applications: a mini review. Designed Monomers and Polymers, 12(3), 197-220. http://dx.doi.org/10.1163/156855509X436030.

43. Hennink, W. E., & Van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Drug Delivery Reviews, 54(1), 13-36. PMid:11755704. http://dx.doi.org/10.1016/S0169-409X(01)00240-X.

44. Figueirêdo, E. S., Macedo, A. C., Figueirêdo, P. F. R., & Figueirêdo, R. S. (2010). Use of hyaluronic acid in Ophthalmology. Arquivos Brasileiros de Oftalmologia, 73(1), 92-95. PMid:20464123.

45. Silva, E. M., Jr. (2012). Hidrogéis de ácido hialurônico. Santo André: Universidade Federal do ABC. Relatório de Iniciação Científica.

46. Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60(2), 215-228. PMid:17997187. http://dx.doi.org/10.1016/j.addr.2007.08.037.

47. Garg, H. G., & Hales, C. A. (2004). Chemistry and biology of Hyaluronan. Boston: Elsevier Science.

48. Kogan, G., Soltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29(1), 17-25. PMid:17091377. http://dx.doi.org/10.1007/s10529-006-9219-z.

49. Laurent, T. C., & Fraser, J. R. E. (1992). Hyaluronan. The FASEB Journal, 6(7), 2397-2404. PMid:1563592.

50. Weigel, P. H., Hascall, V. C., & Tammi, I. M. (1997). Hyaluronan synthases. The Journal of Biological Chemistry, 272(22), 13997-14000. PMid:9206724. http://dx.doi.org/10.1074/jbc.272.22.13997.

51. Schramm, C., Spitzer, M. S., Henke-Fahle, S., Steinmetz, G., Januschowski, K., Heiduschka, P., Geis-Gerstorfer, J., Biedermann, T., Bartz-Schmidt, K. U., & Szurman, P. (2012). The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest. Investigative Ophthalmology & Visual Science, 53(2), 613-621. PMid:22199245. http://dx.doi.org/10.1167/iovs.11-7322.

52. Reitinger, S., & Lepperdinger, G. (2013). Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. Gerontology, 59(1), 71-76. PMid:23006468. http://dx.doi.org/10.1159/000342200.

53. Chung, C., Mesa, J., Randolph, M. A., Yaremchuk, M., & Burdick, J. A. (2006). Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. Journal of Biomedical Materials Research. Part A, 77(3), 518-525. PMid:16482551. http://dx.doi.org/10.1002/jbm.a.30660.

54. Turley, E. A., & Naor, D. (2012). RHAMM and CD44 peptides-analytic tools and potential drugs. Frontiers in Bioscience, 17(1), 1775-1794. PMid:22201835. http://dx.doi.org/10.2741/4018.

55. Balazs, E. A. (2004). Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surgical Technology International, 12, 278-289. PMid:15455338.

56. Mori, M., Yamaguchi, M., Sumitomo, S., & Takai, Y. (2004). H yaluran-based biomaterials in tissue engineering. Acta Histochemica et Cytochemica, 37, 1-5. http://dx.doi.org/10.1267/ahc.37.1.

57. Raftery, R., O’Brien, F., & Cryan, S. A. (2013). Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules, 18(5), 5611-5647. PMid:23676471. http://dx.doi.org/10.3390/molecules18055611.

58. Santos, J. E., Soares, J. P., Dockal, E. R., Filho, S. P. C., & Cavalheiro, E. T. G. (2003). Caracterização de quitosanas comerciais de diferentes origens. Polímeros: Ciência e Tecnologia, 13(4), 242-249. Recuperado em 14 de novembro de 2014, de http://www.revistapolimeros.org.br/PDF/v13n4/v13n4a06.pdf

59. Di Martino, A., Sittinger, M., & Risbud, M. V. (2005). Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26(30), 5983-5990. PMid:15894370. http://dx.doi.org/10.1016/j.biomaterials.2005.03.016.

60. Nwe, N., Furuike, T., & Tamura, H. (2009). The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials (Basel), 2(2), 374-398. http://dx.doi.org/10.3390/ma2020374.

61. Airoldi, C. (2008). A relevante potencialidade dos centros básicos nitrogenados disponíveis em polímeros inorgânicos e biopolímeros na remoção catiônica. Química Nova, 31(1), 144-153. http://dx.doi.org/10.1590/S0100-40422008000100026.

62. Cohen, M., Nery, C., Peccin, M. S., Ressio, C. R., Asaumi, I. D., & Lombello, C. B. (2008). Autologous chondrocyte implantation to treat femoral condyle and talar lesions. Einstein, 6, 37-41. Recuperado em 14 de novembro de 2014, de http://www.einstein.br/revista/arquivos/PDF/693-Einstein%20v6n1p37-41.pdf

63. Gobbi, R. G., Demange, M. K., Barreto, R. B., Pecora, J. R., Rezende, M. U., Barros, E. P., Fo., & Lombello, C. B. (2010). Transplante autólogo de condrócito: relato de três casos. Revista Brasileira de Ortopedia, 45(4), 449-456. PMid:27022579. http://dx.doi.org/10.1590/S0102-36162010000400019.

64. Nery, C., Lombello, C. B., Ressio, C. R., & Asaumi, I. D. (2010). Implante autólogo de condrócitos no tratamento das lesões osteocondrais do talo. Revista ABTPé, 4, 113-123. Recuperado em 14 de novembro de 2014, de http://www.researchgate.net/publication/236343035_Revista_da_ABTP

65. Moroz, A., Bittencourt, R. A. C., Felisbino, S. L., Pereira, H. R., Ferreira, R., & Deffune, E. (2008). Gel de plaquetas: arcabouço 3D para cultura celular. Acta Ortopedica Brasileira, 17(2), 43-45. http://dx.doi.org/10.1590/S1413-78522009000200008.

66. Laranjeira, M. C. M., & Fávere, V. T. (2009). Quitosana: biopolímero funcional com potencial industrial biomédico. Quimica Nova, 32(3), 672-678. http://dx.doi.org/10.1590/S0100-40422009000300011.

67. Kaderli, S., Boulocher, C., Pillet, E., Watrelot-Virieux, D., Rougemont, A. L., Roger, T., Viguier, E., Gurny, R., Scapozza, L., & Jordan, O. (2015). A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy. International Journal of Pharmaceutics, 483(1-2), 158-168. PMid:25666331. http://dx.doi.org/10.1016/j.ijpharm.2015.01.052.

68. Ma, G., Liu, Y., Fang, D., Chen, J., Peng, C., Fei, X., & Nie, J. (2012). Hyaluronic acid/chitosan polyelectrolyte complex nanofibers prepared by electrospinning. Materials Letters, 74, 78-80. http://dx.doi.org/10.1016/j.matlet.2012.01.012.

69. Tan, H., Chu, C. R., Payne, K., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. PMid:19167750. http://dx.doi.org/10.1016/j.biomaterials.2008.12.080.

70. Sung, H. W., Huang, R. N., Huang, L. L. H., Tsai, C. C., & Chiu, C. T. (1998). Feasibility study of a natural cross-linking reagent for biological tissue fixation. Journal of Biomedical Materials Research, 42(4), 560-567. PMid:9827680. http://dx.doi.org/10.1002/(SICI)1097-4636(19981215)42:4<560::AID-JBM12>3.0.CO;2-I.

71. Ferretti, M., Marra, K. G., Kobayashi, K., Defail, A. J., & Chu, C. R. (2006). Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Engineering, 12(9), 2657-2663. PMid:16995799. http://dx.doi.org/10.1089/ten.2006.12.2657.

72. Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering: a review. Carbohydrate Polymers, 92(2), 1262-1279. PMid:23399155. http://dx.doi.org/10.1016/j.carbpol.2012.10.028.

73. Muzzarelli, R. A. A., Greco, F., Busilacchi, A., Sollazzo, V., & Gigante, A. (2012). Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydrate Polymers, 89(3), 723-739. PMid:24750856. http://dx.doi.org/10.1016/j.carbpol.2012.04.057.

74. Yamane, S., Iwasaki, N., Majima, T., Funakoshi, T., Masuko, T., Harada, K., Minami, A., Monde, K., & Nishimura, S. (2005). Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials, 26(6), 611-619. PMid:15282139. http://dx.doi.org/10.1016/j.biomaterials.2004.03.013.

75. Walker, K. J., & Madihally, S. V. (2015). Anisotropic temperature sensitive chitosan-based injectable hydrogels mimicking cartilage matrix. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103(6), 1149-1160. PMid:25285432. http://dx.doi.org/10.1002/jbm.b.33293.

76. Lu, H., Lv, L., Dai, Y., Wu, G., Zhao, H., & Zhang, F. (2013). Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-β1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS One, 8(7), 1-42. PMid:23894564. http://dx.doi.org/10.1371/journal.pone.0069950.
588371dd7f8c9d0a0c8b4ac7 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections