Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

High shear dispersion of tracers in polyolefins for improving their detection

Massardier, Valérie; Louizi, Molka; Maris, Elisabeth; Froelich, Daniel

Downloads: 0
Views: 197


An efficient recycling of end-of-life products is of crucial interest from an economical and ecological point of view. However, the near infrared spectroscopy often used for the optic sorting processes is limited because of the absorption of carbon black present in black plastics and as it only sorts as a function of chemical formulas. The tracing technology developed in this study is based on the dispersion of lanthanide complexes particles into polymers to give them a code that can be related to their formulation and viscosity that are important parameters for their re-processing. As the success of this technology is conditioned by achieving a fine dispersion of the tracer particles, we also focus on accomplishing a fine dispersion of tracer particles by using a high shear process. Processing under high shear rate (N= 800 rpm) has proved to play a determining role in dispersing finely and homogenously tracer particles within PP matrix. Thanks to the good quality of dispersion, the detection of three tracers at a level of 0.1 wt% has been successfully achieved, even in black matrices for an acquisition time of 10 ms.


tracers, polyolefins, automated sorting, UV fluorescence, high shear extrusion, recyclability.


1. Aouachria, K., Quintard, G., Massardier-Nageotte, V., & Belhaneche-Bensemra, N. (2014). The effect of di-(-2-ethyl hexyl) phthalate (dehp) as plasticizer on the thermal and mechanical properties of pvc/pmma blends. Polímeros. Ciência e Tecnologia, 24(4), 428-433. http://dx.doi.org/10.1590/0104-1428.1588.

2. Plastics Europe. (2013). Plastics – the facts 2013. An analysis of European latest plastics production, demand and waste data. Belgium: Plastics Europe. Retrieved in 12 November 2014, from http://www.plasticseurope.org/documents/document/20131014095824-final_plastics_the_facts_2013_published_october2013.pdf

3. Altland, B. L., Cox, D., Enick, R. M., & Beckman, E. J. (1995). Optimization of the high-pressure, near-critical liquid-based microsortation of recyclable post-consumer plastics. Resources, Conservation and Recycling, 15(3-4), 203-217. http://dx.doi.org/10.1016/0921-3449(95)00031-3.

4. Ahmad, S. R. (2004). A new technology for automatic identification and sorting of plastics for recycling. Environmental Technolology, 25(10), 1143-1149. Retrieved in 12 November 2014, from http://www.tandfonline.com/doi/abs/10.1080/09593332508618380

5. Simmons, B. A., Overton, B. W., Viriot, M., Ahmad, S. R., Squires, D. K., & Lambert, C. (1998). Fluorescent tracers enable automatic identification and sorting of waste plastics. British Plastics and Rubber, 8, 4-12.

6. Corbett, E. C., Frey, J. G., Grose, R. I., Hendra, P. J., & Taylorbrown, T. (1994). An investigation into the applicability of luminescent tagging to polymer recovery. Plastics Rubber and Composites Processing and Applications, 21(1), 5-11. Retrieved in 12 November 2014, from http://eprints.soton.ac.uk/id/eprint/15926

7. Maris, E., Froelich, D., Lambert, C., & Hachin, J-M. (2015). FR Patent No 3010789 (A3). Paris: TRACING TECHNOLOGIES Société à responsabilité limitée. Retrieved in 12 November 2014, from http://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacenet.com&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20150320&CC=FR&NR=3010789A3&KC=A3

8. American Plastics Council (2003). An industry full of potential: ten facts to know about plastics from consumer electronics. Virginia: APC. Retrieved in 12 November 2014, from http://plastics.americanchemistry.com/An-Industry-Full-of-Potential-Consumer-Electronics

9. Eisenreich, N., Kull, H., & Thinnes, E. (1992). Rapid identification of plastics with fast near-infrared spectroscopy. In Proceedings of the 23rd International Annual Conference of ICT: waste management of energetic materials and polymers (pp. S.59.1-59.12). Karlsruhe: Fraunhofer-Institut für Chemische Technologie.

10. Froelich, D., Maris, E., Haoues, N., Chemineau, L., Renard, H., Abraham, F., & Lassartesses, R. (2007). State of the art of plastic sorting and recycling: feedback to vehicle design. Minerals Engineering, 20(9), 902-912. http://dx.doi.org/10.1016/j.mineng.2007.04.020.

11. Bezati, F., Froelich, D., Massardier, V., & Maris, E. (2010). Addition of tracers into the polypropylene in view of automatic sorting of plastic wastes using X-ray fluorescence spectrometry. Waste Management (New York, N.Y.), 30(4), 591-596. http://dx.doi.org/10.1016/j.wasman.2009.11.011. PMid:20018501.

12. Bezati, F., Massardier, V., Froelich, D., Maris, E., & Balcaen, J. (2010). Elaboration and characterization of traced polypropylene with rare earth oxides for automatic identification and sorting of end-of-life plastics. Waste and Biomass Valorization, 1(3), 357-365. http://dx.doi.org/10.1007/s12649-010-9028-4.

13. Bezati, F., Froelich, D., Massardier, V., & Maris, E. (2011). Addition of X-ray fluorescent tracers into polymers, new technology for automatic sorting of plastics: proposal for selecting some relevant tracers. Resources, Conservation and Recycling, 55(12), 1214-1221. http://dx.doi.org/10.1016/j.resconrec.2011.05.014.

14. Bezati, F., Massardier, V., Balcaen, J., & Froelich, D. (2011). A study on the dispersion, preparation, characterization and photo-degradation of polypropylene traced with rare earth oxides. Polymer Degradation & Stability, 96(1), 51-59. http://dx.doi.org/10.1016/j.polymdegradstab.2010.11.008.

15. Lambert, C., Hachin, J. M. (2010). FR Patent No WO2010012892A2. Paris: TRACING TECHNOLOGIES Société à responsabilité limitée. Retrieved in 12 November 2014, from http://worldwide.espacenet.com/searchResults?ST=singleline&locale=en_EP&submitted=true&DB=worldwide.espacenet.com&query=WO2010012892

16. Lambert, C., & Hachin, J. M. (2010). US Patent No 2010089804A1. Paris: TRACING TECHNOLOGIES Société à responsabilité limitée. Retrieved in 12 November 2014, from http://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacenet.com&II=4&ND=3&adjacent=true&locale=en_EP&FT=D&date=20100415&CC=US&NR=2010089804A1&KC=A1

17. Maris, E., Aoussat, A., Naffrechoux, E., & Froelich, D. (2012). Polymer tracer detection systems with UV fluorescence spectrometry to improve product recyclability. Minerals Engineering, 29, 77-88. http://dx.doi.org/10.1016/j.mineng.2011.09.016.

18. Lim, S., & White, J. L. (1994). Influence of a compatibilizing agent on the phase morphology of a polyethylene-polyamide 6 blend in a modular intermeshing co-rotating twin screw extruder. Polymer Engineering and Science, 34(3), 221-228. http://dx.doi.org/10.1002/pen.760340308.

19. Shon, K., & Bumm, S. H. (2011). Polymer blend compounding and processing. In A. I. Isayev (Ed.), Encyclopedia of Polymer Blends: Processing (Vol. 2, pp. 1-26). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Retrieved in 12 November 2014, from http://www.wiley-vch.de/books/sample/3527319301_c01.pdf

20. Li, Y., & Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules, 42(7), 2587-2593. http://dx.doi.org/10.1021/ma802662c.

21. Shimizu, H., Li, Y., Kaito, A., & Sano, H. (2005). Formation of nanostructured PVDF/PA11 blends using high-shear processing. Macromolecules, 38(19), 7880-7883. http://dx.doi.org/10.1021/ma051395f.

22. Li, Y., & Shimizu, H. (2011). Fabrication of nanostructured polycarbonate/poly(methyl methacrylate) blends with improved optical and mechanical properties by high-shear. Processing Polymer Engineering and Science, 51(7), 1437-1445. http://dx.doi.org/10.1002/pen.21879.

23. Teyssandier, F., Cassagnau, P., Gerard, J. F., Mignard, N., & Melis, F. (2012). Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion. Materials Chemistry and Physics, 133(2-3), 913-923. http://dx.doi.org/10.1016/j.matchemphys.2012.01.117.

24. Louizi, M., Massardier, V., Mélis, F., Alcouffe, P., & Cassagnau, P. (2014). High shear processing of polypropylene/silica nanocomposites: improvement of structure-properties. International Polymer Processing, 29(1), 118-127. http://dx.doi.org/10.3139/217.2819.

25. Louizi, M., Massardier, V., & Cassagnau, P. (2014). Contribution of high-shear processing to the compatibilization of (PP/EPR)/PE ternary blends. Macromolecular Materials and Engineering, 299(6), 674-688. http://dx.doi.org/10.1002/mame.201300268.

26. Bouaziz, A., Jaziri, M., Dalmas, F., & Massardier, V. (2014). Nanocomposites of silica reinforced polypropylene: Correlation between morphology and properties. Polymer Engineering and Science, 54(9), 2187-2196. http://dx.doi.org/10.1002/pen.23768.

27. Vergnes, B., Valle, G. D., & Delamare, L. (1998). A global computer software for polymer flows in corotating twin screw extruders. Polymer Engineering and Science, 38(11), 1781-1792. http://dx.doi.org/10.1002/pen.10348.

28. Gendron, R., & Binet, D. (1998). State of dispersion: Polypropylene filled with calcium carbonate. Journal of Vinyl and Additive Technology, 4(1), 54-59. http://dx.doi.org/10.1002/vnl.10011.

29. Chen, G. H., Li, Y., & Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon, 45(7), 2334-2340. http://dx.doi.org/10.1016/j.carbon.2007.07.017.

30. Li, Y., & Shimizu, H. (2007). High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer, 48(8), 2203-2207. http://dx.doi.org/10.1016/j.polymer.2007.02.066.

31. Domenech, T., Peuvrel-Disdier, E., & Vergnes, B. (2012). Influence of twin screw processing conditions on structure and properties of polypropylene-organoclay nanocomposites. International Polymer Processing, 27(5), 517-526. http://dx.doi.org/10.3139/217.2591.

32. Villmow, T., Kretzschmar, B., & Pötschke, P. (2010). Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Composites Science and Technology, 70(14), 2045-2055. http://dx.doi.org/10.1016/j.compscitech.2010.07.021.

33. Serpe, G., Jarrin, J., & Dawans, F. (1990). Morphology-processing relationships in polyethylene–polyamide blends. Polymer Engineering and Science, 30(9), 553-565. http://dx.doi.org/10.1002/pen.760300908.

34. Bouaziz, A., Massardier, V., Louizi, M., & Jaziri, M. (2015). Reinforcement of polyolefins-based nanocomposites: combination of compatibilizer with high shear extrusion process. Polymer Engineering and Science, 55(10), 2328-2338. http://dx.doi.org/10.1002/pen.24120.

35. Wu, S. H. (1987). Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. Polymer Engineering and Science, 27(5), 335-343. http://dx.doi.org/10.1002/pen.760270506.

36. Liu, J., Tang, G., Qu, G., Zhou, H., & Guo, Q. (1993). Crystallization of rare earth oxide-filled polypropylene. Journal of Applied Polymer Science, 47(12), 2111-2116. http://dx.doi.org/10.1002/app.1993.070471204.

37. Xiaomin, Z., Jingshu, L., Zhihui, Y., & Jinghua, Y. (1996). Rheological properties and crystallization behavior of yittrium oxide filled low ethylene content polypropylene copolymer. Journal of Applied Polymer Science, 62(2), 313-318. http://dx.doi.org/10.1002/(SICI)1097-4628(19961010)62:2<313::AID-APP6>3.0.CO;2-#.
588371c77f8c9d0a0c8b4a69 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections