Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1965
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Recycling assessment of multilayer flexible packaging films using design of experiments

Uehara, Gabriel Abreu; França, Marcos Pini; Canevarolo Junior, Sebastião V.

Downloads: 0
Views: 251

Abstract

The viability of recycling post-industrial packaging waste, compounded from multilayer laminated PET-PE films, for production of polymer blends with good physico-mechanical performance is analyzed. Initially, several PET-PE model-blends were prepared from fresh polymers and were compounded with different formulations, based on design of experiments (DOE). Polymer compatibilizers based on maleic anhydride (PE-g-MA) and glycidyl methacrylate (E-GMA) have been used to promote the compatibilization reaction. The physico-mechanical properties of the model-blends were evaluated by response surface methodology (RSM). Finally, the post-industrial waste was compounded with the same concentration of compatibilizers in the previous set of model-blends. The DOE methodology showed to be a useful tool for assessing the recycling, since it helped to produce recycled materials with acceptable physico-mechanical properties. Between both compatibilizers studied, PE-g-MA showed to be the best additive for compatibilization due to the presence of a polyamide component in the waste, which undergoes a kinetically favorable compatibilization reaction.

Keywords

DOE, multilayer flexible packaging films, polymer blends, recycling, response surface methodology.

References

1 Manrich, S., Frattini, G., & Rosalini, A. C. (2007). Identificação de plásticos: uma ferramenta para reciclagem. São Carlos: EDUFSCar

2. Coltelli, M. B., Giani, M., Lochiatto, F., Aglietto, M., Savi, S., & Ciardelli, F. (2004). Postconsumer polyethylene terephthalate (PET)/polyolefin blends through reactive processing. Journal of Material Cycles and Waste Management, 6(1), 13-19. http://dx.doi.org/10.1007/s10163-003-0100-z.

3. Wagner, J. R., Jr. (2010). Multilayer Flexible Packaging: technology and applications for the food, personal care and over-the-counter pharmaceutical industries. Rochester: Elsevier.

4. Coltelli, M. B., Savi, S., Aglietto, M., & Ciardelli, F. (2009). A chemical view onto post-consumer poly(Ethylene Terephthalate) valorization through reactive blending with functionalized polyolefins. Polymer Science, Series A, 51(11-12), 1249-1261. http://dx.doi.org/10.1134/S0965545X09110108.

5. Chiu, H. T., & Hsiao, Y. K. (2006). Compatibilization of poly(ethyleneterephthalate)/polypropylene blends with maleic anhydride grafted polyethylene-octene elastomer. Journal of Polymer Research, 13(2), 153-160. http://dx.doi.org/10.1007/s10965-005-9020-z.

6. Kalfoglou, N. K., Skafidas, D. S., & Kallitsis, J. K. (1995). Comparison of compatibilizer effectiveness for PET/HDPE blends. Polymer, 36(23), 4453-4462. http://dx.doi.org/10.1016/0032-3861(95)96853-Z.

7. Boutevin, B., Lusinchi, J. M., Pietrasanta, Y., & Robin, J. J. (1996). Improving poly(ethylene terephthalate) high-density polyethylene blends by using graft copolymers. Polymer Engineering and Science, 36(6), 879-884. http://dx.doi.org/10.1002/pen.10475.

8. Lopes, C. M. A., Goncalves, M. D. C., & Felisberti, M. I. (2007). Blends of poly(ethylene terephthalate) and low density polyethylene containing aluminium: a material obtained from packaging recycling. Journal of Applied Polymer Science, 106(4), 2524-2535. http://dx.doi.org/10.1002/app.26769.

9. Bartoli, F., Bruni, C., Coltelli, M. B., Castelvetro, V., & Ciardelli, F. (2012). Conversion of post-industrial pet-pe scraps into compatibilized plastic blends for new applications. In 6th International Conference on Times of Polymers (TOP) and Composites (pp. 160-162). Ischia: American Institute of Physics.

10. Utracki, L. A. (2002). Polymer blends handbook. Netherlands: Kluwer Academic Publishers.

11. Neto, B. B., Scarminio, I. S., & Bruns, R. E. (2010). Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. Porto Alegre: Bookman.

12. Sundararaj, U., & Macosko, C. W. (1995). Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules, 28(8), 2647-2657. http://dx.doi.org/10.1021/ma00112a009.

13.Harrats, C., Thomas, S., & Groeninckx, G. (2006). Micro and nanostructured multiphase polymer blend systems. United States: CCR Press.

14. Uemura, S., & Takayanagi, M. (1966). Application of the theory of elasticity and viscosity of two-phase systems to polymer blends. Journal of Applied Polymer Science, 10(1), 113-125. http://dx.doi.org/10.1002/app.1966.070100109.

15. Martuscelli, E. (1984). Influence of composition, crystallization conditions and melt phase-structure on solid morphology, kinetics of crystallization and thermal-behavior of binary polymer polymer blends. Polymer Engineering and Science, 24(8), 563-586. http://dx.doi.org/10.1002/pen.760240809.

16. Macosko, C. W., Jeon, H. K., & Hoye, T. R. (2005). Reactions at polymer-polymer interfaces for blend compatibilization. Progress in Polymer Science, 30(8-9), 939-947. http://dx.doi.org/10.1016/j.progpolymsci.2005.06.003.

17. Lusinchi, J. M., Boutevin, B., Torres, N., & Robin, J. J. (2001). In situ compatibilization of HDPE/PET blends. Journal of Applied Polymer Science, 79(5), 874-880. http://dx.doi.org/10.1002/1097-4628(20010131)79:5<874::AID-APP120>3.0.CO;2-B.

18. Carvalho, G. B., & Souza, J. A. (2009). Compatibilização reativa e tenacificação em blendas poliméricas de PET reciclado com elastômeros olefínicos. In Anais do 10º Congresso Brasileiro de Polímeros (pp. 1-10). Foz do Iguaçu: Associação Brasileira de Polímeros.

19. Yildirim, E., & Yurtsever, M. A. (2012). A comparative study on the efficiencies of polyethylene compatibilizers by using theoretical methods. Journal of Polymer Research, 19(2), 1-12. http://dx.doi.org/10.1007/s10965-011-9771-7.

20. Tedesco, A., Krey, P. F., Barbosa, R. V., & Mauler, R. S. (2002). Effect of the type of nylon chain-end on the compatibilization of PP/PP-GMA/nylon 6 blends. Polymer International, 51(2), 105-110.

21. Becker, D., Porcel, F., Hage, E., Jr., & Pessan, L. A. (2008). The Influence of the compatibilizer characteristics on the interfacial characteristics and phase morphology of aPA/SAN blends. Polymer Bulletin, 61(3), 353-362. http://dx.doi.org/10.1007/s00289-008-0956-0.

22. Orr, C. A., Cernohous, J. J., Guegan, P., Hirao, A., Jeon, H. K., & Macosko, C. W. (2001). Homogeneous reactive coupling of terminally functional polymers. Polymer, 42(19), 8171-8178. http://dx.doi.org/10.1016/S0032-3861(01)00329-9.

23. Araújo, E., Hage, E., Jr., & Carvalho, A. (2003). Compatibilization of Polyamide 6/ABS Blends using MMA-GMA and MMA-MA Reactive Acrylic Copolymers. Part 1. Rheological and Mechanical Properties of Blends. Polímeros: Ciência e Tecnologia, 13(3), 205-211. http://dx.doi.org/10.1590/S0104-14282003000300011.
588371c47f8c9d0a0c8b4a5d polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections