Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1959
Polímeros: Ciência e Tecnologia
Original Article

Mixing process influence on thermal and rheological properties of NBR/SiO2 from rice husk ash

Sousa, Ana Maria Furtado de; Peres, Augusto Cesar de Carvalho; Furtado, Cristina Russi Guimarães; Visconte, Leila Lea Yuan

Downloads: 0
Views: 342

Abstract

Silica was extracted from rice husk ash (RHA) by a sequence of reactions to produce nanosilica. Two laboratory routes, co-coagulation and spray drying, were used to incorporate the nanosilica into the rubber matrix. Samples were characterized regarding filler incorporation efficiency, thermal stability, rheological behavior and morphology. Thermogravimetric analysis showed that spray-drying was the most efficient filler incorporation process and also the presence of silica increased the thermal resistance of the rubber compound when compared to the unfilled rubber. The rheological behavior showed that NBR filled with silica presented higher elastic torque (S’), storage modulus (G’) and complex viscosity (η*) than unfilled rubber. The Payne effect was also observed for the composites produced by spray-drying. In addition, the thermal behavior and Payne effect results were supported by the comparison of morphology observed by FEG-SEM analysis.

Keywords

co-coagulation, latex, silica, spray-drying.

References

1. Rocha, T. L. A., Jacobi, M. M., Samios, D., & Schuster, R. H. (2006). Evaluation of the influence of the polymer-filler interaction on compounds based on epoxidized elastomeric matrix and precipitated silica. Polímeros: Ciência e Tecnologia, 16(2), 111-115. http://dx.doi.org/10.1590/S0104-14282006000200010.

2. Pal, K., Rajasekar, R., Kang, D. J., Zhang, Z. X., Pal, S. K., Kim, J. K., & Das, C. K. (2010). Effect of fillers and nitrile blended PVC on natural rubber/high styrene rubber with nanosilica blends: Morphology and wear. Materials & Design, 31(1), 25-34. http://dx.doi.org/10.1016/j.matdes.2009.07.023.

3. Hassan, H. H., Ateia, E., Darwish, N. A., Halim, S. F., & Abd El-Aziz, A. K. (2012). Effect of filler concentration on the physico-mechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber. Materials & Design, 34, 533-540. http://dx.doi.org/10.1016/j.matdes.2011.05.005.

4. Taguet, A., Cassagnau, P., & Lopez-Cuesta, J. M. (2014). Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Progress in Polymer Science, 39(8), 1526-1563. http://dx.doi.org/10.1016/j.progpolymsci.2014.04.002.

5. Pourhossaini, M. R., & Razzaghi-Kashani, M. (2014). Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites. Polymer, 55(9), 2279-2284. http://dx.doi.org/10.1016/j.polymer.2014.03.026.

6. Leblanc, J. L. (2002). Rubber-filler interactions and rheological properties in filled compounds. Progress in Polymer Science, 27(4), 627-687. http://dx.doi.org/10.1016/S0079-6700(01)00040-5.

7. Zhang, C., Liu, L., Zhang, Z. X., Pal, K., & Kim, J. K. (2011). Effect of silica and silicone oil on the mechanical and thermal properties of silicone rubber. Journal of Macromolecular Science, Part B: Physics, 50(6), 1144-1153. http://dx.doi.org/10.1080/08941920.2010.518533.

8. Pongdong, W., Nakason, C., Kummerlöwe, C., & Vennemann, N. (2015). Influence of filler from a renewable resource and silane coupling agent on the properties of epoxidized natural rubber vulcanizates. Journal of Chemistry, 2015, 1-15. http://dx.doi.org/10.1155/2015/796459.

9. Wang, J., & Wu, Y. (2014). Preparation of silica-reinforced styrene–butadiene rubber via co-coagulation process. Journal of Elastomers and Plastics, 46(2), 144-155. http://dx.doi.org/10.1177/0095244312465277.

10. Prasertsri, S., & Rattanasom, N. (2012). Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties. Polymer Testing, 31(5), 593-605. http://dx.doi.org/10.1016/j.polymertesting.2012.03.003.

11. Sittiphan, T., Prasassarakich, P., & Poompradub, S. (2014). Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique. Materials Science and Engineering B, 181, 39-45. http://dx.doi.org/10.1016/j.mseb.2013.11.018.

12. Lin, J., Wu, X., Zheng, C., Zhang, P., Huang, B., Guo, N., & Jin, L. Y. (2014). Synthesis and properties of epoxy-polyurethane/silica nanocomposites by a novel sol method and in-situ solution polymerization route. Applied Surface Science, 303, 67-75. http://dx.doi.org/10.1016/j.apsusc.2014.02.075.

13. NPCS Board of Consultants & Engineers. (2010). The complete book on rubber processing and compounding. India: Asia Pacific Business Press.

14. Rao, Y. Q., Munro, J., Ge, S., & Garcia-Meitin, E. (2014). PU elastomers comprising spherical nanosilicas: Balancing rheology and properties. Polymer, 55(23), 6076-6084. http://dx.doi.org/10.1016/j.polymer.2014.09.065.

15. Šupová, M., Martynková, G. S., & Barabaszová, K. (2011). Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Science of Advanced Materials, 3(1), 1-25. http://dx.doi.org/10.1166/sam.2011.1136.

16. Mokhothu, T. H., Luyt, A. S., & Messori, M. (2014). Reinforcement of EPDM rubber with in situ generated silica particles in the presence of a coupling agent via a sol – gel route. Polymer Testing, 33, 97-106. http://dx.doi.org/10.1016/j.polymertesting.2013.11.009.

17. Poompradub, S., Thirakulrati, M., & Prasassarakich, P. (2014). In situ generated silica in natural rubber latex via the sol–gel technique and properties of the silica rubber composites. Materials Chemistry and Physics, 144(1-2), 122-131. http://dx.doi.org/10.1016/j.matchemphys.2013.12.030.

18. Dick, J. S., Harmon, C., & Vare, A. (1999). Quality assurance of natural rubber using the rubber process analyzer. Polymer Testing, 18(5), 327-362. http://dx.doi.org/10.1016/S0142-9418(98)00026-9.

19. Fröhlich, J., Niedermeier, L. H. D., & Luginsland, H. D. (2005). The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites. Part A, Applied Science and Manufacturing, 36(4), 449-460. http://dx.doi.org/10.1016/j.compositesa.2004.10.004.

20. Bezerra, F. O., Nunes, R. C. R., Gomes, A. S., Oliveira, M. G., & Ito, E. N. (2013). Efeito Payne em nanocompósitos de nbr com montmorilonita organofílica. Polímeros: Ciência e Tecnologia, 23(2), 223-228. http://dx.doi.org/10.4322/S0104-14282013005000022.

21. Ramier, J., Gauthier, C., Chazeau, L., Stelandre, L., & Guy, L. (2007). Payne effect in silica-filled styrene-butadiene rubber: Influence of surface treatment. Journal of Polymer Science. Part B, Polymer Physics, 45(3), 286-298. http://dx.doi.org/10.1002/polb.21033.

5b7b0a140e8825b54b896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections