Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

Ribeiro, Robson Fleming; Pardini, Luiz C.; Alves, Nilton P.; Brito Júnior, Carlos Alberto Rios

Downloads: 0
Views: 756


A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN) polymer was viabilized by using the 1,2,3-propanetriol (glycerol) as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.


polyacrylonitrile fibers, extrusion process, stabilization process, carbon fibers


1. Masson, J. C. (1995). Acrylic fiber technology and applications. New York: Marcel Dekker.

2. Morgan, P. E. (2005). Carbon fibers and their composites. Boca Raton: CRC Press. http://dx.doi.org/10.1201/9781420028744.

3. Edie, D. D. (1998). The effect of processing on the structure and properties of carbon fibers. Carbon, 36(4), 345-362. http://dx.doi.org/10.1016/S0008-6223(97)00185-1.

4. Brito, C. A. R., Jr., Fleming, R. R., Pardini, L. C., & Alves, N. P. (2013). Poliacrilonitrila: processos de fiação empregados na indústria. Polímeros: Ciência e Tecnologia, 23(6), 764-770. http://dx.doi.org/10.4322/polimeros.2013.006.

5. Blickenstaff, R. A. (1976). US Patent 3984601. United States. Retrieved in 22 September 2014, from https://www.google.com.ar/patents/US3984601.

6. Yoon, H. S. (1995). US Patent 5434002. United States.Retrieved in 22 September 2014, from http://www.google.com.py/patents/US5434002.

7. Yoon, H. S. (1996). US Patent 5589264. United States.Retrieved in 22 September 2014, from http://www.google.com/patents/US5589264.

8. Smierciak, R. C. (1997). US Patent 5602222. United States.Retrieved in 22 September 2014, from https://www.google.com.ar/patents/US5602222.

9. Smierciak, R. C. (1997). US Patent 5618901. United States.Retrieved in 22 September 2014, from https://www.google.com.ar/patents/US5618901.

10. Bortner, M. J. (2003). Melt processing of metastable acrylic copolymer carbon precursors (Doctoral thesis). Virginia Polytechnic Institute, Blacksburg.

11. Alves, N. P. (2007). WO Patent 147224 A2. Patent Cooperation Treaty. Retrieved in 22 September 2014, from http://www.google.com/patents/WO2007147224A2?cl=en

12. Brito Júnior, C. A. R., Fleming, R. R., Pardini, L. C., & Alves, N. P. (2012). Análise térmica da poliacrilonitrila plastificada com glicerol em extrusora. Polímeros: Ciência e Tecnologia, 22(4), 364-368. http://dx.doi.org/10.1590/S0104-14282012005000055.

13. Rahaman, M. S. A., Ismail, A. F., & Mustafa, A. (2007). A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation & Stability, 92(8), 1421-1432. http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023.

14. Furushima, Y., Nakada, M., Takahashi, H., & Ishikiriyama, K. (2014). Study of melting and crystallization behavior of polyacrylonitrile using ultrafast differential scanning calorimetry. Polymer, 55(13), 3075-3081. http://dx.doi.org/10.1016/j.polymer.2014.05.015.

15. Sedghi, A., Farsani, R. E., & Shokuhfar, A. (2008). The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties. Journal of Materials Processing Technology, 198(1-3), 60-67. http://dx.doi.org/10.1016/j.jmatprotec.2007.06.052.

16. Xue, Y., Liu, J., & Liang, J. (2013). Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization. Polymer Degradation & Stability, 98(1), 219-229. http://dx.doi.org/10.1016/j.polymdegradstab.2012.10.018.

17. Ouyang, Q., Cheng, L., Wang, H., & Li, K. (2008). Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polymer Degradation & Stability, 93(8), 1415-1421. http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.021.

18. Arbab, S., & Zeinolebadi, A. (2013). A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors. Polymer Degradation & Stability, 98(12), 2537-2545. http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.014.

19. Ju, A., Guang, S., & Xu, H. (2013). Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers. Carbon, 54, 323-335. http://dx.doi.org/10.1016/j.carbon.2012.11.044.

20. Mathur, R. B., Bahl, O. P., & Sivaram, P. (1992). Thermal degradation of polyacrilonitrile fibres. Current Science, 62(10), 662-669.

21. Wangxi, Z., Jie, L., & Gang, W. (2003). Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 41(14), 2805-2812. http://dx.doi.org/10.1016/S0008-6223(03)00391-9.

22. Ji, M., Wang, C., Bai, Y., Yu, M., & Wang, Y. (2007). Comparison of tensile fracture morphologies among various polyacrylonitrile-based carbon fibers. Polymer Bulletin, 59(3), 381-390. http://dx.doi.org/10.1007/s00289-007-0773-x.

23. Ji, M., Wang, C., Bai, Y., Yu, M., & Wang, Y. (2007). Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization. Polymer Bulletin, 59(4), 527-536. http://dx.doi.org/10.1007/s00289-007-0796-3.

24. Kalashnik, A. T. (2002). The role of different factors in creation of the structure of stabilized acrylic fibres. Fibre Chemistry, 34(1), 10-17. http://dx.doi.org/10.1023/A:1015595021817.

25. Wu, G. P., Lu, C. X., Ling, L. C., & Lu, Y. G. (2009). Comparative investigation on the thermal degradation and stabilization of carbon fiber precursors. Polymer Bulletin, 62(5), 667-678. http://dx.doi.org/10.1007/s00289-009-0039-x.

26. Nielsen, M., Jurasek, P., Hayashi, J., & Furimsky, E. (1995). Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons. Journal of Analytical and Applied Pyrolysis, 35(1), 43-51. http://dx.doi.org/10.1016/0165-2370(95)00898-O.

27. Xue, T. J., Mckinney, M. A., & Wilkie, C. A. (1997). The thermal degradation of polyacrylonitrile. Polymer Degradation & Stability, 58(1-2), 193-202. http://dx.doi.org/10.1016/S0141-3910(97)00048-7.

28. Zhang, W., & Li, M. (2005). DSC study on the polyacrylonitrile precursors for carbon fibers. Journal of Materials Science and Technology, 21(4), 581-584. Retrieved in 22 September 2014, from http://www.jmst.org/fileup/PDF/2004258.pdf

29. Ouyang, Q., Cheng, L., Wang, H. J., & Li, K. X. (2008). DSC study of stabilization reaction in poly (Acrylonitrile-co-Itaconic Acid) with Peak-Resolving method. Journal of Thermal Analysis and Calorimetry, 94(1), 85-88. http://dx.doi.org/10.1007/s10973-007-8773-5.
588371c97f8c9d0a0c8b4a71 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections