Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1924
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Rheological, mechanical and morphological properties of poly(methyl methacrylate)/poly(ethylene terephthalate) blend with dual reactive interfacial compatibilization

Reinaldo, Juciklécia da Silva; Nascimento, Maria Carolina Burgos Costa do; Ito, Edson Noriyuki; Hage Junior, Elias

Downloads: 0
Views: 499

Abstract

In this work, the rheological, mechanical and morphological behavior of immiscible blend poly (methyl methacrylate) with elastomeric particles (PMMAelast) and post-consumer poly (ethylene terephthalate) (PET) with and without the use of the interfacial compatibilizer poly (methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) (MGE) was studied. The significant increase in torque presented in rheological analyses has shown a indication of chemical reactions between the epoxy group of MGE with end groups of PET chains and also with the elastomeric phase of PMMAelast. The increased concentration of PET yielded an increase in maximum strength and elasticity modulus and a decrease in elongation at break. The PMMAelast/PET binary blend (50/50 wt%) and PMMAelast/PET/MGE compatibilized blend (65/30/5 wt%) showed pronounced results in elongation at break compared to PMMAelast, whereas, in the first results were due to the evidence of a co-continuous morphological structure and in the second, due to the efficiency of the dual reactive interfacial compatibilization of PMMAelast/PET blends. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed that PMMAelast/PET/MGE blends exhibit complex phase morphology due to the presence of elastomeric particles in the PMMAelast copolymer and in the use of MGE terpolymer.

Keywords

PMMA copolymer, post-consumer PET, morphology, reactive extrusion.

References

1. Utracki, L. A. (1989). Polymer alloys and blends: thermodynamics and rheology. Munich: Hanser.

2. Utracki, L. A. (1995). History of commercial polymer alloys and blends. Polymer Engineering and Science, 35(1), 2-17. http://dx.doi.org/10.1002/pen.760350103.

3. Roenbson, L. M. (2007). Polymer blends: a comprehensive review. Munich: Hanser.

4. Brydson, J. A. (1999). Plastics materials (7th ed.). Oxford: Butterworth-Heinemann.

5. Mark, J. E. (1999). Polymer data handbook. New York: Oxford University Press.

6. Mano, E. B. (2003). Polímeros como materiais de engenharia. São Paulo: Edgard Blucher.

7. Bucknall, C. B. (1977). Toughened plastics. London: Applied Science. http://dx.doi.org/10.1007/978-94-017-5349-4.

8. Ayre, D. S., & Bucknall, C. B. (1998). Particle cavitation in rubber-toughened PMMA: experimental testing of the energy-balance criterion. Polymer, 39(20), 4785-4791. http://dx.doi.org/10.1016/S0032-3861(97)10253-1.

9. Bucknall, C. B., Rizzieri, R., & Moore, D. R. (2000). Detection of incipient rubber particle cavitation in toughened PMMA using dynamic mechanical tests. Polymer, 41(11), 4149-4156. http://dx.doi.org/10.1016/S0032-3861(99)00639-4.

10. Lalande, L., Plummer, J. G., Manson, J.-A. E., & Gérard, P. (2006). Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers. Engineering Fracture Mechanics, 73(16), 2413-2426. http://dx.doi.org/10.1016/j.engfracmech.2006.05.014.

11. Carvalho, F. P., Gonçalves, M. C., & Felisberti, M. I. (2012). Effect of in situ polymerization conditions of methyl methacrylate on the structural and morphological properties of poly(methyl methacrylate)/poly(acrylonitrile-g-(ethylene-co-propylene-co-diene)-g-styrene) PMMA/AES blends. Journal of Applied Polymer Science, 124(4), 2846-2856. http://dx.doi.org/10.1002/app.35337.

12. Cocco, D. R., Carvalho, F. P., & Felisberti, M. I. (2013). Structures and morphologies of in situ polymerized blends of PMMA and ASA. Journal of Applied Polymer Science, 130(1), 654-664. http://dx.doi.org/10.1002/app.39188.

13. Todo, M., Takahashi, J., Watanabe, H., Nakamoto, J., & Arakawa, K. (2006). Effect of loading-rate on fracture micromechanism of methylmethacrylate–butadiene–styrene polymer blend. Polymer, 47(13), 4824-4830. http://dx.doi.org/10.1016/j.polymer.2006.04.042.

14. Cheng, T. W., Keskkula, H., & Paul, D. R. (1992). Property and morphology relations for ternary blends of polycarbonate, brittle polymers and impact modifier. Polymer, 33(8), 1606-1619. http://dx.doi.org/10.1016/0032-3861(92)91056-8.

15. Zhou, C., Chen, M., Tan, Z. Y., Sun, S. L., Ao, Y. H., Zhang, M. Y., Yang, H. D., & Zhang, H. X. (2006). The influence of arrangement of St in MBS on the properties of PVC/MBS blends. European Polymer Journal, 42(8), 1811-1818. http://dx.doi.org/10.1016/j.eurpolymj.2006.03.017.

16. Chen, X. D., Wang, J. S., & Shen, J. R. (2006). Effect of the shell thickness of methacrylate-butadiene-styrene core–shell impact modifier on toughening polyvinyl chloride. Journal of Polymer Research, 13(4), 335-341. http://dx.doi.org/10.1007/s10965-006-9048-8.

17. Aerdts, A. M., Groeninckx, G., Zirkzee, H. F., van Aert, H. A. M., & Geurts, J. M. (1997). Preparation of epoxy-functionalized methyl methacrylate-butadiene-styrene core-shell particles and investigation of their dispersion in polyamide-6. Polymer, 38(16), 4247-4252. http://dx.doi.org/10.1016/S0032-3861(96)01003-8.

18. Mano, E. B., & Mendes, L. C. (1999). Introdução a polímeros (2nd ed.). São Paulo: Edgard Blucher.

19. Romão, W., Spinacé, M. A. S., & De Paoli, M. A. (2009). Poli(tereftalato de etileno), PET: uma revisão de processos de síntese, mecanismos de degradação e sua reciclagem. Polímeros: Ciência e Tecnologia, 19(2), 121-132. http://dx.doi.org/10.1590/S0104-14282009000200009.

20. Bannach, G., Perpértuo, G. L., Cavalheiro, E. T. G., Cavalheiro, C. C. S., & Rocha, R. R. (2011). Efeitos da história térmica nas propriedades térmicas do polímero PET: um experimento para ensino de análise térmica. Quimica Nova, 34(10), 1825-1829. http://dx.doi.org/10.1590/S0100-40422011001000016.

21. Paul, D. R., Barlow, J. W., & Keskkula, H. (1988). Encyclopedia of polymer blend systems. New York: John Wiley & Sons.

22. Canevarolo, S. V., Jr. (2006). Ciência dos polímeros: um texto básico para tecnólogos e engenheiro (2nd ed.). São Paulo: Artliber.

23. Coelho, T. M., Castro, R., & Gobbo, J. A., Jr (2011). Containers in Brazil: opportunities and challenges of a logistics model for post-consumer waste recycling. Resources, Conservation and Recycling, 55(3), 291-299. http://dx.doi.org/10.1016/j.resconrec.2010.10.010.

24. Welle, F. (2011). Twenty years of PET bottle to bottle recycling: an overview. Resources, Conservation and Recycling, 55(11), 865-875. http://dx.doi.org/10.1016/j.resconrec.2011.04.009.

25. Welle, F. (2013). Is PET bottle-to-bottle recycling safe? Evaluation of post-consumer recycling processes according to the EFSA guidelines. Resources, Conservation and Recycling, 73, 41-45. http://dx.doi.org/10.1016/j.resconrec.2013.01.012.

26. Scheirs, J. (1998). Polymer recycling: science, technology and applications. New York: John Wiley & Sons.

27. Kerboua, N., Cinausero, N., Sadoun, T., & Lopez-Cuesta, J. M. (2010). Effect of organoclay in an immiscible poly(ethylene terephtalate) waste/poly(methyl methacrylate) blend. Journal of Applied Polymer Science, 117(1), 129-137. http://dx.doi.org/10.1002/app.31968.

28. Mallette, J. G., Márquez, A., Manero, O., & Castro-Rodríguez, R. (2000). Carbon black filled PET/PMMA blends: electrical and morphological studies. Polymer Engineering and Science, 40(10), 2272-2278. http://dx.doi.org/10.1002/pen.11359.

29. Utracki, L. A. (2002). Compatibilization of polymer blends. Canadian Journal of Chemical Engineering, 80(6), 1008-1016. http://dx.doi.org/10.1002/cjce.5450800601.

30. Koning, C., Van Duin, M., Pagnoulle, C., & Jerome, R. (1998). Strategies for compatibilization of polymer blends. Progress in Polymer Science, 23(4), 707-757. http://dx.doi.org/10.1016/S0079-6700(97)00054-3.

31. Fink, J. K. (2005). Reactive polymers fundamentals and applications: a concise guide to industrial polymers (2nd ed.). New York: William Andrew Publishing.

32. Hale, W., Keskkula, H., & Paul, D. R. (1999). Compatibilization of PBT/ABS blends by methyl methacrylate-glycidyl methacrylate-ethyl acrylate terpolymers. Polymer, 40(2), 365-377. http://dx.doi.org/10.1016/S0032-3861(98)00189-X.

33. Larocca, N. M., Ito, E. N., Rios, C. T., Pessan, L. A., Bretas, R. E. S., & Hage, E., Jr. (2010). Effect of PBT molecular weight and reactive compatibilization on the dispersed‐phase coalescence of PBT/SAN blends. Journal of Polymer Science. Part B: Polymer Physics, 48(21), 2274-2287. http://dx.doi.org/10.1002/polb.22110.

34. Bretas, R. E. S., & D’ Ávila, M. A. (2005). Reologia de polímeros fundidos. São Carlos: EdUFSCar.

35. Araújo, E. M., Hage, E., Jr, & Carvalho, A. J. F. (2003). Compatibilização de blendas de poliamida 6/ABS usando os copolímeros acrílicos reativos MMA-GMA e MMA-MA. Parte 1: comportamento reológico e propriedades mecânicas e propriedades mecânicas das blendas. Polímeros: Ciências e Tecnologia, 13(3), 205-211. http://dx.doi.org/10.1590/S0104-14282003000300011.

36. Xanthos, M. (1992). Reactive extrusion: principles and practice. New York: Oxford University Press.

37. Ito, E. N., Silva, W. T. L., Marconcini, J. M., Ribeiro, C., Magalhães, W. L. E., Hage, E., Jr., & Mattoso, L. H. C. (2007). Effect of processing on the properties of poly(methyl methacrylate)/sílica nanocomposites. In 23rd Polymer Processing Society Annual Meeting. Salvador.

38. Dewangan, B., & Jagtap, R. N. (2006). Amphiphilic block copolymers of PtBA-b-PMMA as compatibilizers for blends of PET and PMMA. Polymer Engineering and Science, 46(9), 1147-1152. http://dx.doi.org/10.1002/pen.20577.

39. Dantas, R. L. F. (2011). Estudo morfológico da blenda polimérica poli(metacrilato de metila)/poli(tereftalato de etileno) reciclado PMMA/PET (Dissertação de mestrado). Universidade Federal do Rio Grande do Norte, Natal.

40. Brandrup, J., Immergut, E. H., & Grulke, E. A. (1982). Polymer handbook (4th ed.). New York: John Wiley & Sons.
588371c77f8c9d0a0c8b4a67 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections