Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1896
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Study of the structural, thermal, rheological and film properties of functional copolymers of hydroxyethyl acrylate and methyl methacrylate

Mejia, María; Murillo, Edwin

Downloads: 0
Views: 1217

Abstract

New functional polymers will be prepared using alkyd resins having high solid content (environmentally friendly) and comb-type structural morphology. Different copolymers of hydroxyethyl acrylate and methyl methacrylate (HEMMA) were synthesized by solution polymerization using azo-bis-(isobutyronitrile) (AIBN) as initiator and dimethylformamide as a solvent. The proportions utilized of AIBN were 0.5 (HEMMA1), 1.0 (HEMMA2), 1.5 (HEMMA3) and 2.0 wt. % (HEMMA4). The conversion percentage of the reaction was higher than 90%. The formation of the copolymers was evidenced by infrared analysis, hydroxyl value, and nuclear magnetic resonance. The intensity of OH group adsorption increased with the molecular weight and hydroxyl value. The polydispersity index was lower than 1.5. All copolymers exhibited a stable region on viscosity at a shear rate between 0.1 and 10 s–1. The copolymers exhibited good thermal stability, flexibility, and adherence.

Keywords

hydroxyethyl acrylate, methyl methacrylate, synthesis, copolymerization, properties.

References

1. Murillo, E. A., López, B. L., & Hess, M.(2004). Synthesis and characterization of a pressure-sensitive adhesive based on an isobutyl acrylate / 2-ethylhexyl acrylate copolymer. e-polymer, 28, 1-10.

2. Silvestri, D., Gagliardi, M., Cristallini, C., Barbani, N., & Giusti, P. (2009). Different composition poly (methyl methacrylate-co-butyl methacrylate) copolymers through seeded semi-batch emulsion polymerization. Polymer Bulletin, 63(3), 423-439. http://dx.doi.org/10.1007/s00289-009-0095-2.

3. Yeon, K., Yeon, J., Choi, Y., & Min, S. (2014). Deformation behavior of acrylic polymer concrete: Effects of methacrylic acid and curing temperature. Construction & Building Materials, 63, 125-131. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.051.

4. Chen, J. J., Ahmad, A. L., & Ooi, B. S. (2014). Thermo-responsive properties of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel and its effect on copper ion removal and fouling of polymer-enhanced ultrafiltration. Journal of Membrane Science, 469, 73-86. http://dx.doi.org/10.1016/j.memsci.2014.05.062.

5. Murillo, E. A., & López, B. L. (2011). Novel waterborne hyperbranched acrylated-maleinized alkyd resins. Progress in Organic Coatings, 72(4), 731-738. http://dx.doi.org/10.1016/j.porgcoat.2011.08.004.

6. Miller, K. R., & Soucek, M. D. (2012). Photopolymerization of biocompatible films containing poly(lactic acid). European Polymer Journal, 48(12), 2107-2116. http://dx.doi.org/10.1016/j.eurpolymj.2012.08.006.

7. Çaykara, T., Özyürek, C., Kantoğlu, Ö., & Erdoğan, B. (2003). Thermal behavior of poly(2-hydroxyethyl methacrylate-maleic acid) networks. Polymer Degradation & Stability, 80(2), 339-343. http://dx.doi.org/10.1016/S0141-3910(03)00018-1.

8. Taghizadeh, S. M., & Ghasemi, D. (2010). Synthesis and optimization of a four-component acrylic-based copolymer as pressure sensitive adhesive. Iranian Polymer Journal, 19, 343-352.

9. Kowalczyk, K., Spychaj, T., Ubowska, A., & Schmidt, B. (2014). Industrially applicable methods of poly(methyl methacrylate)/organophilic montmorillonite nanocomposites preparation: processes and cast materials characterization. Applied Clay Science, 97, 96-103. http://dx.doi.org/10.1016/j.clay.2014.05.011.

10. Ozbay, S., & Erbil, H. Y. (2014). Solution copolymerization of perfluoroalkyl ethyl methacrylate with methyl methacrylate and butyl acrylate: synthesis and surface properties. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 452, 9-17. http://dx.doi.org/10.1016/j.colsurfa.2014.03.054.

11. Shan, X., Liu, Y. C., & Lam, Y. C. (2008). Studies of polymer deformation and recovery in micro hot embossing. Microsystem Technologies, 14(7), 1055-1060. http://dx.doi.org/10.1007/s00542-007-0486-y.

12. Moayed, S. H., Fatemi, S., & Pourmahdian, S. (2007). Synthesis of a latex with bimodal particle size distribution for coating applications using acrylic monomers. Progress in Organic Coatings, 60(4), 312-319. http://dx.doi.org/10.1016/j.porgcoat.2007.07.023.

13. Park, S. G., Kwak, N. S., Hwang, C. W., Park, H., & Hwang, T. S. (2012). Synthesis and characteristics of aminated vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate anion-exchange membrane for redox flow battery applications. Journal of Membrane Science, 423, 429-437. http://dx.doi.org/10.1016/j.memsci.2012.08.040.

14. Dziczkowski, J., & Soucek, M. D. (2012). Factors influencing the stability and film properties of acrylic/alkyd water-reducible hybrid systems using a response surface technique. Progress in Organic Coatings, 73(4), 330-343. http://dx.doi.org/10.1016/j.porgcoat.2011.03.005.

15. Harakawa, H., Kasari, A., Tominaga, A., & Yabuta, M. (1998). The rheological properties of an aqueous acrylic dispersion suitable for automotive waterborne basecoats. Progress in Organic Coatings, 34(1-4), 84-90. http://dx.doi.org/10.1016/S0300-9440(98)00003-4.

16. Gómez, J. L., Monleón, M., Gallego, G., Peidro, N., Pérez, V., Pissis, P., & Kyritsis, A. (1999). Poly(methyl acrylate)/poly(hydroxyethyl acrylate) sequential interpenetrating polymer networks. Miscibility and water sorption behavior. Journal of Polymer Science. Part B, Polymer Physics, 37, 1587-1599. http://dx.doi.org/10.1002/(SICI)1099-0488(19990715)37:14<1587::AID-POLB4>3.0.CO;2-U.

17. Pourjavadi, A., Samadi, M., & Ghasemzadeh, H. (2008). Fast-swelling superabsorbent hydrogels from poly(2-hydroxy ethyl acrylate-co-sodium acrylate) grafted on starch. Stärke, 60(2), 79-86. http://dx.doi.org/10.1002/star.200700666.

18. Sahloul, N., Emwas, A., Power, W., & Penlidis, A. (2005). Ethyl acrylate‐hydroxyethyl acrylate and hydroxyethyl acrylate‐methacrylic acid: reactivity ratio estimation from cross‐linked polymer using high resolution magic angle spinning spectroscopy. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 42(10), 1369-1385. http://dx.doi.org/10.1080/10601320500205558.

19. Mun, G. A., Nurkeeva, Z. S., Dergunov, S. A., Nam, I. K., Maimakov, T. P., Shaikhutdinov, E. M., Lee, S. C., & Park, K. (2008). Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. Reactive & Functional Polymers, 68(1), 389-395. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.07.012.

20. Lee, J. H., & Kim, J. J. (2014). Poly(hydroxyethyl acrylate-co-coumaryl acrylate) as a photo-responsive amphiphile. Journal of Industrial and Engineering Chemistry, 20(5), 3075-3080. http://dx.doi.org/10.1016/j.jiec.2013.11.046.

21. Henini, G., Souahi, F., & Laidani, Y. (2012). Tracking offline conversion solution polymerization of methyl methacrylate / vinyl acetate in toluene in a reactor calorimeter. Procedia Engineering, 33, 225-233. http://dx.doi.org/10.1016/j.proeng.2012.01.1198.

22. Murillo, E. A., Vallejo, P. P., & López, B. L. (2010). Synthesis and characterization of hyperbranched alkyd resins based on tall oil fatty acids. Progress in Organic Coatings, 69(3), 235-240. http://dx.doi.org/10.1016/j.porgcoat.2010.04.018.

23. Murillo, E. A., Vallejo, P. P., & López, B. L. (2011). Effect of tall oil fatty acids content on the properties of novel hyperbranched alkyd resins. Journal of Applied Polymer Science, 112(6), 3151-3158. http://dx.doi.org/10.1002/app.33502.

24. Murillo, E. A., López, B. L., & Brostow, W. (2011). Synthesis and characterization of novel alkyd–silicone hyperbranched nanoresins with high solid contents. Progress in Organic Coatings, 72(3), 292-298. http://dx.doi.org/10.1016/j.porgcoat.2011.04.019.

25. Chen, S., Hu, T., Tian, Y., Chen, L., & Pojman, J. A. (2007). Facile synthesis of poly(hydroxyethyl acrylate) by frontal free-radical polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 45(5), 873-881. http://dx.doi.org/10.1002/pola.21865.

26. Moad, G., Rizzardo, E., & Thang, S. H. (2005). Living radical polymerization by the RAFT process. Australian Journal of Chemistry, 58(6), 379-410. http://dx.doi.org/10.1071/CH05072.

27. Jain, M., Vora, R. A., & Satpathy, U. S. (2003). Kinetics of emulsion copolymerization of methylmethacrylate and ethylacrylate: effect of type and concentration of initiator in unseeded polymerization system. European Polymer Journal, 39(10), 2069-2076. http://dx.doi.org/10.1016/S0014-3057(02)00347-6.

28. Xu, M., Yan, X., Cheng, R., & Yu, X. (2001). Investigation into the solution properties of hyperbranched polymer. Polymer International, 50(12), 1338-1345. http://dx.doi.org/10.1002/pi.740.

29. Murillo, E. A., Vallejo, P. P., Sierra, L., & López, B. L. (2009). Characterization of hyperbranched polyol polyesters based on 2,2-bis (methylol propionic acid) and pentaerythritol. Journal of Applied Polymer Science, 112(1), 200-207. http://dx.doi.org/10.1002/app.29397.

30. Murillo, E. A., Cardona, A., & López, B. L. (2011). Rheological behavior in the molten state and solution of hyperbranched polyester of fourth and fifth generation. Journal of Applied Polymer Science, 119(2), 929-935. http://dx.doi.org/10.1002/app.32774.

31. Murillo, E. A., Vallejo, P. P., & López, B. L. (2010). Characterization of hydroxylated hyperbranched polyesters of fourth and fifth generation. Polymer, 10(1), 1347-1358. http://dx.doi.org/10.1515/epoly.2010.10.1.1347.

32. Perera, D., & Shanks, R. A. (1995). Synthesis and rheological properties of soluble poly(hydroxyethyl methacrylate) and some copolymers. Polymer International, 36(4), 303-308. http://dx.doi.org/10.1002/pi.1995.210360401.

33. McManus, N. T., Kim, J. D., & Penlidis, A. (1998). Observations on styrene-hydroxyethyl acrylate and styrene-hydroxyethyl acrylate-ethyl acrylate polymerizations. Polymer Bulletin, 41(6), 661-668. http://dx.doi.org/10.1007/s002890050415.

34. Peykova, Y., Lebedeva, O. V., Diethert, A., Müller-Buschbaum, P., & Willenbacher, N. (2012). Adhesive properties of acrylate copolymers: effect of the nature of the substrate and copolymer functionality. International Journal of Adhesion and Adhesives, 34, 107-116. http://dx.doi.org/10.1016/j.ijadhadh.2011.12.001.
588371d87f8c9d0a0c8b4ab2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections