Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1868
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Compósitos polímero-madeira preparados por polimerização in situ de metil metacrilato usando aditivos bifuncionais

Wood-polymer composites prepared by in situ polymerization of methyl methacrylate using bi-functional additives

Mattos, Bruno Dufau; Missio, André Luiz; Cademartori, Pedro Henrique Gonzalez de; Gatto, Darci Alberto; Magalhães, Washington Luiz Esteves

Downloads: 0
Views: 1076

Resumo

O presente trabalho teve por objetivo a confecção de compósitos polímero-madeira por meio de polimerização in situ de metil metacrilato (MMA), utilizando ácido metacrílico (MAA) e glicidil metacrilato (GMA) como agentes de ligação e reticulação. Amostras de madeira de guapuruvu foram impregnadas em um sistema de vácuo e pressão e polimerizadas em estufa a 90°C por 10h, usando 1,5% de peroxido de benzoíla como catalisador. Os compósitos foram caracterizados por meio de testes de absorção de água e estabilidade dimensional, molhabilidade, ATR-IR, TGA, MEV e WPG. Os espectros de ATR-IR mostraram incrementos nas bandas a 1746, 1460, e 1145 cm–1, referentes as estruturas químicas dos polímeros dentro da madeira, confirmado posteriormente pelas imagens de MEV. A termogravimetria apontou reações químicas entre os copolímeros e a parede celular da madeira nos compósitos com GMA e MAA. Os compósitos preparados com MMA apresentaram incrementos acima de 50% nas propriedades higroscópicas e de estabilidade dimensional, entretanto a adição de GMA e MAA resultou em maiores incrementos nas mesmas propriedades, entre 66-90%.

Palavras-chave

polimerização por radicais livres, Schizolobium parahyba, catálise térmica, reticulantes, agentes de ligação.

Abstract

We prepared wood/polymer composites by in situ polymerization of methyl methacrylate (MMA) using glycidyl methacrylate (GMA) and methacrylic acid (MAA) as cross-linkers and coupling agents. The guapuruvu wood samples were impregnated in a vacuum/pressure system and polymerized at 90 °C for 10 h, using benzoyl peroxide at 1.5 wt % as catalyst. We characterized the composites through water uptake, dimensional stability tests, wettability, ATR-FTIR spectroscopy, TGA, SEM, and WPG. ATR-FTIR spectra showed an increase of the peaks at 1746, 1460, and 1145 cm-1, corresponding to the chemical structures of the polymers into the pores and capillaries of the wood. This was further confirmed in the SEM images. TGA curves showed evidences for a chemical interaction between the copolymer and the wood cell wall in the composites with GMA and MAA. Hygroscopicity and dimensional stability properties of the composites prepared with MMA improved by 50%. Nevertheless, the addition of GMA and MAA resulted in additional increases for hydrophobicity and dimensional stability of the samples, ~ 66 – 90%.

Keywords

free-radical polymerization, Schizolobium parahyba, heat catalyst, cross-linkers, coupling agents.

References

1. Correa, C. A., Fonseca, C. N. P., Neves, S., Razzino, C. A., & Hage, J., Jr. (2003). Compósitos termoplásticos com madeira. Polímeros, 13(3), 154-165. http://dx.doi.org/10.1590/S0104-14282003000300005.

2. Ang, A. F., Zaidon, A., Bakar, E. S., Hamami, S. M., & Anwar, U. M. K. (2009). Enhancing the properties of mahang (Macaranga spp.) wood through acrylic treatment in combination with crosslinker. Modern Applied Science, 3(11), 2-10. http://dx.doi.org/10.5539/mas.v3n11p2.

3. Baysal, E., Yalinkilic, M. K., Altinok, M., Sonmez, A., Peker, H., & Colak, M. (2007). Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Construction & Building Materials, 21(9), 1879-1885. http://dx.doi.org/10.1016/j.conbuildmat.2006.05.026.

4. Devi, R. R., & Maji, T. K. (2012). Chemical modification of simul wood with styrene–acrylonitrile copolymer and organically modified nanoclay. Wood Science and Technology, 46(1-3), 299-315. http://dx.doi.org/10.1007/s00226-011-0406-2.

5. Devi, R. R., & Maji, T. K. (2006). Effect of chemical modification with styrene and glycidyl methacrylate on the properties of pinewood. Indian Journal of Engineering and Materials Sciences, 13(2), 149-154. Recuperado em 26 de setembro de 2014, de http://nopr.niscair.res.in/handle/123456789/7228

6. Ding, W.-D., Koubaa, A., Chaala, A., Belem, T., & Krause, C. (2008). Relationship between wood porosity, wood density and methyl methacrylate impregnation rate. Wood Material Science & Engineering, 3(1-2), 62-70. http://dx.doi.org/10.1080/17480270802607947.

7. Ding, W.-D., Koubaa, A., & Chaala, A. (2013). Mechanical properties of MMA-hardened hybrid poplar wood. Industrial Crops and Products, 46, 304-310. http://dx.doi.org/10.1016/j.indcrop.2013.02.004.

8. Islam, M. S., Hamdan, S., Hassan, A., Talib, Z. A., & Sobuz, H.-J. (2014). The chemical modification of tropical wood polymer composites. Journal of Composite Materials, 48(7), 783-789. http://dx.doi.org/10.1177/0021998313477894.

9. Magalhães, W. L. E., & Silva, R. R. (2004). Treatment of Caribbean pine by in situ polymerization of styrene and furfuryl alcohol. Journal of Applied Polymer Science, 91(3), 1763-1769. http://dx.doi.org/10.1002/app.13252.

10. Stolf, D. O., & Lahr, F. A. R. (2004). Wood-polymer composite: physical and mechanical properties of some wood species impregnated with styrene and methyl methacrylate. Materials Research, 7(4), 611-617. http://dx.doi.org/10.1590/S1516-14392004000400015.

11. Li, Y., Dong, X., Liu, Y., Li, J., & Wang, F. (2011). Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. International Biodeterioration & Biodegradation, 65(7), 1087-1094. http://dx.doi.org/10.1016/j.ibiod.2011.08.009.

12. Li, Y., Wu, Q., Li, J., Liu, Y., Wang, X.-M., & Liu, Z. (2012). Improvement of dimensional stability of wood via combination treatment: swelling with maleic anhydride and grafting with glycidyl methacrylate and methyl methacrylate. Holzforschung, 66(1), 59-66. http://dx.doi.org/10.1515/HF.2011.123.

13. Carvalho, P. E. R. (2005). Guapuruvu: taxonomia e nomenclatura (Circular Técnica Embrapa Florestas, No. 104, pp. 1-10). Colombo: Embrapa. Recuperado em 26 de setembro de 2014, de http://ainfo.cnptia.embrapa.br/digital/bitstream/CNPF-2009-09/43201/1/circ-tec104.pdf

14. Zhang, H.-H., Cui, Y., & Zhang, Z. (2013). Chemical treatment of wood fiber and its reinforced unsaturated polyester composites. Journal of Vinyl and Additive Technology, 19(1), 18-24. http://dx.doi.org/10.1002/vnl.20321.

15. Devi, R. R., & Maji, T. K. (2013). In situ polymerized wood polymer composite: effect of additives and nanoclay on the thermal, mechanical properties. Materials Research, 16(4), 954-963. http://dx.doi.org/10.1590/S1516-14392013005000071.

16. Hazarika, A., & Maji, T. K. (2013). Effect of different crosslinkers on properties of melamine formaldehyde-furfuryl alcohol copolymer/montmorillonite impregnated softwood (Ficus hispida). Polymer Engineering and Science, 53(7), 1394-1404. http://dx.doi.org/10.1002/pen.23391.

17. Islam, M. S., Hamdan, S., Jusoh, I., Rahman, M. R., & Talib, Z. A. (2011). Dimensional stability and dynamic young’s modulus of tropical light hardwood chemically treated with methyl methacrylate in combination with hexamethylene diisocyanate cross-linker. Industrial & Engineering Chemistry Research, 50(7), 3900-3906. http://dx.doi.org/10.1021/ie1021859.

18. Siau, J. F. (1984). Transport processes in wood. Berlin: Springer-Verlag.

19. Islam, M. S., Hamdan, S., Hasan, M., Ahmed, A. S., & Rahman, M. R. (2012). Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites (WPC). International Biodeterioration & Biodegradation, 72(8), 108-113. http://dx.doi.org/10.1016/j.ibiod.2012.05.019.

20. Colom, X., & Carrillo, F. (2005). Comparative study of wood samples of the Northern Area of Catalonia by FTIR. Journal of Wood Chemistry and Technology, 25(1-2), 1-11. http://dx.doi.org/10.1081/WCT-200058231.

21. Silverstein, R. M., Webster, F. X., & Kiemle, D. (2005) Spectrometric identification of organic compounds. Hoboken: John Wiley & Sons.

22. Chen, Y., Fan, Y., Gao, J., & Stark, N. M. (2012). The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. BioResouces, 7(1), 1157-1170.

23. Schwanninger, M., Rodrigues, J. C., Pereira, H., & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23-40. http://dx.doi.org/10.1016/j.vibspec.2004.02.003.

24. Cademartori, P. H. G., Santos, P. S. B., Serrano, L., Labidi, J., & Gatto, D. A. (2013). Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Industrial Crops and Products, 45(2), 360-366. http://dx.doi.org/10.1016/j.indcrop.2012.12.048.

25. Calonego, F. W., Severo, E. T. D., & Furtado, E. L. (2010). Decay resistance of thermally-modified Eucalyptus grandis wood at 140°C, 160°C, 180°C, 200°C and 220°C. Bioresource Technology, 101(23), 9391-9394. http://dx.doi.org/10.1016/j.biortech.2010.06.119. PMid:20655200.

26. Ferriol, M., Gentilhomme, A., Cochez, M., Oget, N., & Mieloszynski, J. L. (2003). Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polymer Degradation & Stability, 79(2), 271-281. http://dx.doi.org/10.1016/S0141-3910(02)00291-4.

27. von Lampe, I., Schultze, D., & Zygalsky, F. (2001). Thermal degradation of poly(methacrylic acid) and Y-Ba-Cu polymethacrylate precursors for the preparation of high temperature superconductors. Polymer Degradation & Stability, 73(1), 87-92. http://dx.doi.org/10.1016/S0141-3910(01)00072-6.

28. Zulfiqar, S., Zulfiqar, M., Nawaz, M., McNeill, I. C., & Gorman, J. G. (1990). Thermal degradation of poly(glycidyl methacrylate). Polymer Degradation & Stability, 30(2), 195-203. http://dx.doi.org/10.1016/0141-3910(90)90075-I.

29. Vinu, R., & Madras, G. (2008). Photocatalytic degradation of methyl methacrylate copolymers. Polymer Degradation & Stability, 93(8), 1440-1449. http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.018.

30. YongFeng, L., XiaoYing, D., ZeGuang, L., WanDa, J., & YiXing, L. (2013). Effect of polymer in situ synthesized from methyl methacrylate and styrene on the morphology, thermal behavior, and durability of wood. Journal of Applied Polymer Science, 128(1), 13-20. http://dx.doi.org/10.1002/app.38099.

31. Devi, R. R., Maji, T. K., & Banerjee, A. N. (2004). Studies on dimensional stability and thermal properties of rubber wood chemically modified with styrene and glycidyl methacrylate. Journal of Applied Polymer Science, 93(4), 1938-1945. http://dx.doi.org/10.1002/app.20657.

32. Devi, R. R., & Maji, T. K. (2007). Effect of glycidyl methacrylate on the physical properties of wood–polymer composites. Polymer Composites, 28(1), 1-5. http://dx.doi.org/10.1002/pc.20265.

33. Ayrilmis, N., Benthien, J. T., & Thoemen, H. (2012). Effects of formulation variables on surface properties of wood plastic composites. Composites. Part B, Engineering, 43(2), 325-331. http://dx.doi.org/10.1016/j.compositesb.2011.07.011.

34. Kaymakci, A., Ayrilmis, N., & Gulec, T. (2013). Surface properties and hardness of polypropilene composites filled with sunflower stalk flour. BioResource, 8(1), 592-602. http://dx.doi.org/10.15376/biores.8.1.592-602.

35. Mamiński, M., Król, M., McDonald, A., McIlroy, D., Niraula, I., Czechowska, J., & Parzuchowski, P. (2013). Thermally initiated solvent-free radical modification of beech (Fagus sylvatica) wood. Wood Science and Technology, 47(5), 1019-1031. http://dx.doi.org/10.1007/s00226-013-0555-6.
588371cd7f8c9d0a0c8b4a83 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections