Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

PF/CLAY hybrid materials: a simple method to modulate the optical properties

Em, Marcio Chao Chen; Barbosa, Camila Gouveia; Péres, Laura Oliveira; Faez, Roselena

Downloads: 0
Views: 947


The aim of this work was modulate the emission properties and improve thermal stability of a conjugated polymer incorporated into an inorganic matrix. Hybrid material was prepared based on poly(9,9-dioctylfluorene-co-phenylene (PF) and montmorillonite (Na+Mt) clay using wet impregnation of 10, 30 and 50 wt.% of PF into Na+Mt and Na+Mt intercalated with ammonium quaternary salts (hexadecyltrimethylammonium — HDTMA) in a different proportions (OMt-1 and OMt-2). The materials were characterized by infrared and UV-Vis spectroscopy, fluorescence, X-ray diffratometry and thermogravimetry analysis. The results show that the presence of the clay alters the photoluminescent and thermal properties. Nevertheless, the degree of the clay organophilization and the clay content influences the luminescent properties due to the diverse interaction behavior between the polymer and clay. The sodium clay acted only as dispersing agent since no intercalation process occurs and the emission displacement is assigned to this behavior. In this case the PF emission displace from 402 to 395 nm. A nonlinear displacement is observed for PF/OMt-2 due the difficulties to conclude if the intercalation of the polymer occurs (379, 403 and 412 for hybrid with 10, 30 and 50%, respectively). For PF/OMt-1 a higher displacements for lower wavelength is observed due to intercalation of polymer chains and subsequent isolation in the interlamellar space, especially with material with 10 and 30% of PF in the hybrid material, whose displacement reached to 360 nm. All these results show that is possible to try to control the emission of the conjugated hybrid material changing the rate of the material.


polyfluorene, clay, hybrid materials, photoluminescence.


1. Bernius, M. T., Inbasekaran, M., O’Brien, J., & Wu, W. S. (2000). Progress with light-emitting polymers. Advanced Materials, 12(23), 1737-1750. http://dx.doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N.

2. Cirpan, A., Ding, L., & Karasz, F. E. (2005). Optical and electroluminescent properties of polyfluorene copolymers and their blends. Polymer, 46(3), 811-817. http://dx.doi.org/10.1016/j.polymer.2004.11.107.

3. Akcelrud, L. (2003). Electroluminescent polymers. Progress in Polymer Science, 28(6), 875-962. http://dx.doi.org/10.1016/S0079-6700(02)00140-5.

4. List, E. J. W., Guentner, R., Scanducci de Freitas, P., & Scherf, U. (2002). The effect of keto defect sites on the emission properties of polyfluorene‐type materials. Advanced Materials, 14(5), 374-378. http://dx.doi.org/10.1002/1521-4095(20020304)14:5<374::AID-ADMA374>3.0.CO;2-U.

5. Oliveira, H. P. M., Cossiello, R. F., Atvars, T. D. Z., & Akcelrud, L. (2006). Dispositivos poliméricos eletroluminescentes. Quimica Nova, 29(2), 277-286. http://dx.doi.org/10.1590/S0100-40422006000200019.

6. Kaya, I., Yıldırım, M., Aydın, A., & Senol, D. (2010). Synthesis and characterization of fluorescent graft fluorene-co-polyphenol derivatives: the effect of substituent on solubility, thermal stability, conductivity, optical and electrochemical properties. Reactive & Functional Polymers, 70(10), 815-826. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.013.

7. Shakutsui, M., Matsuura, H., & Fujita, K. (2009). Improved efficiency of polymer light-emitting diodes by inserting a hole transport layer formed without thermal treatment above glass transition temperature. Organic Electronics, 10(5), 834-842. http://dx.doi.org/10.1016/j.orgel.2009.04.004.

8. Stéphan, O., Collomb, V., Vial, J.-C., & Armand, M. (2000). Blue-green light-emitting diodes and electrochemical cells based on a copolymer derived from fluorine. Synthetic Metals, 113(3), 257-262. http://dx.doi.org/10.1016/S0379-6779(00)00214-9.

9. Zhao, W., Cao, T., & White, J. M. (2004). On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking. Advanced Functional Materials, 14(8), 783-790. http://dx.doi.org/10.1002/adfm.200305173.

10. Lee, T.-W., Park, O. O., Kim, J.-J., Hong, J.-M., & Kim, Y. C. (2001). Efficient photoluminescence and electroluminescence from environmentally stable polymer/clay nanocomposites. Chemistry of Materials, 13(6), 2217-2222. http://dx.doi.org/10.1021/cm010201h.

11. Barbosa, R., Araújo, E. M., Oliveira, A. D., & Melo, T. J. A. (2006). Efeito de sais quaternários de amônio na organofilização de uma argila bentonita nacional. Cerâmica, 52(324), 264-268. http://dx.doi.org/10.1590/S0366-69132006000400009.

12. Colvin, V. L., Schlamp, M. C., & Alivisatos, A. P. (1994). Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370(6488), 354-357. http://dx.doi.org/10.1038/370354a0.

13. Hagrman, P. J., Hagrman, D., & Zubieta, J. (1999). Organic - inorganic hybrid materials: from “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angewandte Chemie International Edition, 38(18), 2638-2684. http://dx.doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2638::AID-ANIE2638>3.0.CO;2-4. PMid:10508356.

14. Santos, M. A., Mattoso, L. H. C., Defácio, R., & Jamshid, A. (2001). Compósitos de borracha natural com compostos condutivos à base de negro de fumo e polímero condutor. Polímeros: Ciência e Tecnologia, 11(3), 126-134. http://dx.doi.org/10.1590/S0104-14282001000300012.

15. Kim, J., Kim, B., Anand, C., Mano, A., Zaidi, J. S. M., Ariga, K., You, J., Vinu, A., & Kim, E. (2015). A single-step synthesis of electroactive mesoporous ProDOT-silica structures. Angewandte Chemie International Edition, 54(29), 8407-8410. http://dx.doi.org/10.1002/anie.201502498. PMid:26037244.

16. Nakao, A., & Fujiki, M. (2015). Visualizing spontaneous physisorption of non-charged π-conjugated polymers onto neutral surfaces of spherical silica in nonpolar solvents. Polymer Journal, 47(6), 434-442. http://dx.doi.org/10.1038/pj.2015.14.

17. Joshi, P. B., & Zhang, P. (2015). Facile capture of conjugated polymer nanodots in silica nanoparticles to facilitate surface modification. Journal of Materials Science, 50(10), 3597-3603. http://dx.doi.org/10.1007/s10853-015-8920-5.

18. Paiva, L. B., Morales, A. R., & Díaz, F. R. V. (2008). Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica, 54(330), 213-226. http://dx.doi.org/10.1590/S0366-69132008000200012.

19. De Barros, A., Ferreira, M., Constantino, C. J. L., & Ferreira, M. (2014). Nanocomposites based on LbL films of polyaniline and sodium montmorillonite clay. Synthetic Metals, 197, 119-125. http://dx.doi.org/10.1016/j.synthmet.2014.09.001.

20. Fatnassi, M., & Es-Souni, M. (2015). Nanoscale phase separation in laponite–polypyrrole nanocomposites. Application to electrodes for energy storage. Royal Society of Chemistry, 5(28), 21550-21557. http://dx.doi.org/10.1039/C4RA16540C.

21. Feng, L., Sha, J., He, Y., Chen, S., Liu, B., Zhang, H., & Lü, C. (2015). Conjugated polymer and spirolactam rhodamine-B derivative co-functionalized mesoporous silica nanoparticles as the scaffold for the FRET-based ratiometric sensing of mercury (II) ions. Microporous and Mesoporous Materials, 208, 113-119. http://dx.doi.org/10.1016/j.micromeso.2015.01.039.

22. Silva, A. A., Valenzuela-Diaz, F. R., Martins, G. S. V., & Rodrigues, M. G. F. (2007). Preparation of organophilic clays using different concentrations of quaternary ammonium salt. Cerâmica, 53(328), 417-422. http://dx.doi.org/10.1590/S0366-69132007000400013.

23. Park, J. H., Lim, Y. T., Park, O. O., Yu, J.-W., Kim, J. K., & Kim, Y. C. (2004). Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayers nanocomposite light-emitting devices. Materials Science and Engineering C, 24(1-2), 75-78. http://dx.doi.org/10.1016/j.msec.2003.09.039.

24. Zheng, M., Ding, L., Lin, Z., & Karasz, F. E. (2002). Synthesis and Characterization of Fluorenediylvinylene and Thiophenediylvinylene-Containing Terphenylene-Based Copolymers. Macromolecules, 35(27), 9939-9946. http://dx.doi.org/10.1021/ma020533n.

25. Ramôa, S. D. A., Merlini, C., Barra, G. M. O., & Soares, B. G. (2014). Obtenção de nanocompósitos condutores de montmorilonita/polipirrol: Efeito da incorporação do surfactante na estrutura e propriedades. Polímeros: Ciência e Tecnologia, 24(ESP), 57-62. http://dx.doi.org/10.4322/polimeros.2014.051.

26. Lee, T. W., Park, O. O., Yoon, J., & Kim, J. (2001). Enhanced quantum efficiency in polymer/layered silicate nanocomposite light emitting devices. Synthetic Metals, 121(1), 1737-1738. http://dx.doi.org/10.1016/S0379-6779(00)01493-4.

27. Jing, C., Chen, L., Shi, Y., & Jin, X. (2005). Synthesis and characterization of exfoliated MEHPPV/clay nanocomposites by in situ polymerization. European Polymer Journal, 41(10), 2388-2394. http://dx.doi.org/10.1016/j.eurpolymj.2005.05.007.

28. Ramachandran, G., Simon, G. P., Cheng, Y. B., & Dai, L. (2005). Control of fluorescence emission color of benzo 15-crown-5 ether substituted oligo phenylene vinylene-ceramic nanocomposites. Polymer, 46(18), 7176-7184. http://dx.doi.org/10.1016/j.polymer.2005.05.087.

29. Evans, R. C., Macedo, A. G., Pradhan, S., Scherf, U., Carlos, L. D., & Burrows, H. D. (2010). Fluorene based conjugated polyelectrolyte/silica nanocomposites: chatge-mediated phase aggregation at the organic-inorganic interfece. Advanced Materials, 22(28), 3032-3037. http://dx.doi.org/10.1002/adma.200904377. PMid:20535734.

30. Winkler, B., Dai, L., & Mau, A. W.-H. (1999). Organic-inorganic hybrid light-emitting composites: poly(p-phenylene vinylene) intercalated clay nanoparticles. Journal of Materials Science Letters, 18(19), 1539-1541. http://dx.doi.org/10.1023/A:1006610926414.

31. Lee, H.-C., Lee, T.-W., Lim, Y. T., & Park, O. O. (2002). Improved environmental stability in poly(p-phenylene vinylene)/layered silicate nanocomposite. Applied Clay Science, 21(5-6), 287-293. http://dx.doi.org/10.1016/S0169-1317(02)00090-X.

32. Santos, T. C. F., Peres, L. O., Wang, S. H., Oliveira, O. N. Jr, & Caseli, L. (2010). Mixing alternating copolymers containing fluorenyl groups with phospholipids to obtain Langmuir and Langmuir-Blodgett films. Langmuir, 26(8), 5869-5875. http://dx.doi.org/10.1021/la9038107. PMid:19921831.

33. Péres, L. O., Errien, N., Faulques, E., Athalin, H., Lefrant, S., Massuyeau, F., Wéry, J., Froyer, G., & Wang, S. H. (2007). Synthesis and characterization of a new alternating copolymer containing quaterphenyl and fluorenyl groups. Polymer, 48(1), 98-104. http://dx.doi.org/10.1016/j.polymer.2006.10.038.

34. Fontana, J. P., Camilo, F. F., Bizeto, M. A., & Faez, R. (2013). Evaluation of the role of an ionic liquid as organophilization agent into montmorillonite for NBR rubber nanocomposite production. Applied Clay Science, 83-84, 203-209. http://dx.doi.org/10.1016/j.clay.2013.09.002.

35. Bergaya, F., Theng, B. K. G., & Lagaly, G. (2006). Handbook of Clay Science (Vol. 1, Developments in Clay Science). Amsterdam: Elsevier.

36. Xia, C., & Advincula, R. C. (2001). Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer. Macromolecules, 34(17), 5854-5859. http://dx.doi.org/10.1021/ma002036h.

37. Ranger, M., Rondeau, D., & Leclerc, M. (1997). New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping. Macromolecules, 30(25), 7686-7691. http://dx.doi.org/10.1021/ma970920a.

38. Scherf, U., & List, E. J. W. (2002). Semiconducting polyfluorenes: towards reliable structure: property relationships. Advanced Materials, 14(7), 477-487. http://dx.doi.org/10.1002/1521-4095(20020404)14:7<477::AID-ADMA477>3.0.CO;2-9.

39. Cassemiro, S. M., Thomazi, F., Roman, L. S., Marletta, A., & Akcelrud, L. (2009). Effect of conjugation length on photophysical properties of a conjugated–non-conjugated multiblock copolymer. Synthetic Metals, 159(19-20), 1975-1982. http://dx.doi.org/10.1016/j.synthmet.2009.07.004.
588371d27f8c9d0a0c8b4a98 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections