Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1803
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Using glycerol produced from biodiesel as a plasticiser in extruded biodegradable films

Bilck, A. P.; Müller, Carmen M. O.; Olivato, Juliana B.; Mali, Suzana; Grossmann, Maria Victória Eiras; Yamashita, Fabio

Downloads: 0
Views: 250

Abstract

The demand for renewably sourced biodegradable materials has increased the need to produce materials that combine appropriate functional properties at competitive costs. Thermoplastic starch and polyester blends are an interesting alternative to current materials due to the low cost of starch and the functional properties and processability of the resulting blends. Producing thermoplastic starch (TPS) requires using a plasticiser at concentrations between 20 and 30%wt (in relation to starch). Glycerol is the most common plasticiser due to its high plasticising capacity and thermal stability at processing temperatures. The objective of this study was to evaluate glycerol waste from the biodiesel industry, with different degrees of purification, as plasticisers for TPS / poly (butylene adipate-co-terephthalate) (PBAT) blends. Different purities of glycerol produced films with similar mechanical, optical and barrier properties to those made with purified glycerol (99.7%). Therefore, crude glycerol is a renewable alternative plasticiser that reduces the cost of plasticisation by 6-fold.

Keywords

cassava starch, poly (butylene adipate-co-terephthalate), biopolymers, extrusion, biodegradable packaging.

References

1. Chi, Z., Pyle, D., Wen, Z., Frear, C., & Chen, S. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 42(11), 1537-1545. http://dx.doi.org/10.1016/j.procbio.2007.08.008.

2. Freitas, S. M., & Nachiluk, K. (2009). Desempenho da Produção Brasileira de Biodiesel em 2008. Análises e Indicadores do Agronegócio, 4(2), 1-4. Retrieved in 09 June 09 2014, from http://www.iea.sp.gov.br/out/LerTexto.php?codTexto=10115

3. Thompson, J. C., & He, B. B. (2006). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2), 261-265. http://dx.doi.org/10.13031/2013.20272.

4. Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82-87. http://dx.doi.org/10.1016/j.carbpol.2007.07.026.

5. Galdeano, M. C., Mali, S., Grossmann, M. V. E., Yamashita, F., & García, M. A. (2009). Effects of plasticizers on the properties of oat starch films. Materials Science and Engineering C, 29(2), 532-538. http://dx.doi.org/10.1016/j.msec.2008.09.034.

6. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydrate Polymers, 77(2), 293-299. http://dx.doi.org/10.1016/j.carbpol.2008.12.030.

7. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328-1333. http://dx.doi.org/10.1016/j.foodhyd.2008.09.002.

8. Pelissari, F. M., Grossmann, M. V. E., Yamashita, F., & Pineda, E. A. G. (2009). Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499-7504. http://dx.doi.org/10.1021/jf9002363. PMid:19627142.

9. Alves, V. D., Mali, S., Beleia, A. P., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941-946. http://dx.doi.org/10.1016/j.jfoodeng.2005.12.007.

10. Kijchavengkul, T., Auras, R., Rubino, M., Ngouajio, M., & Fernandez, R. T. (2008). Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: field study. Chemosphere, 71(5), 942-953. http://dx.doi.org/10.1016/j.chemosphere.2007.10.074. PMid:18262221.

11. Brandelero, R. H. H., Yamashita, F., & Grossmann, M. V. E. (2010). The effect of surfactant Tween 80 on the hydrophilicity, water vapor permeation, and the mechanical properties of cassava starch and poly(butylene adipate-co-terephthalate) (PBAT) blend films. Carbohydrate Polymers, 82(4), 1102-1109. http://dx.doi.org/10.1016/j.carbpol.2010.06.034.

12. Bilck, A. P., Roberto, S. R., Grossmann, M. V. E., & Yamashita, F. (2011). Efficacy of some biodegradable films as pre-harvest covering material for guava. Scientia Horticulturae, 130(1), 341-343. http://dx.doi.org/10.1016/j.scienta.2011.06.011.

13. Olivato, J. B., Grossmann, M. V. E., Yamashita, F., Eiras, D., & Pessan, L. A. (2012). Citric acid and maleic anhydride as compatibilizers in starch/poly(butylene adipate-co-terephthalate) blends by one-step reactive extrusion. Carbohydrate Polymers, 87(4), 2614-2618. http://dx.doi.org/10.1016/j.carbpol.2011.11.035.

14. Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. (2012). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydrate Polymers, 90(1), 159-164. http://dx.doi.org/10.1016/j.carbpol.2012.05.009. PMid:24751025.

15. Nobrega, M. M., Olivato, J. B., Müller, C. M. O., & Yamashita, F. (2012). Biodegradable starch-based films containing saturated fatty acids: Thermal, infrared and Raman spectroscopic characterization. Polímeros: Ciência e Tecnologia, 22(5), 475-480. http://dx.doi.org/10.1590/S0104-14282012005000068.

16 American Standard Testing Methods. (2002). D-882-02: standard test methods for tensile properties of thin plastic sheeting. Philadelphia: ASTM. Annual book.

17 American Standard Testing Methods. (2000). E-96-00: standard test methods for water vapor transmission of material. Philadelphia: ASTM. Annual book.

18. Thunwall, M., Kuthanová, V., Boldizar, A., & Rigdahl, M. (2008). Film blowing of thermoplastic starch. Carbohydrate Polymers, 71(4), 583-590. http://dx.doi.org/10.1016/j.carbpol.2007.07.001.

19. Santana, R. M. C., & Manrich, S. (2005). Filmes tubulares de compósitos de termoplásticos pós-consumo: Análise térmica e mecânica. Polímeros: Ciência e Tecnologia, 15(3), 163-170. http://dx.doi.org/10.1590/S0104-14282005000300005.

20. Nobrega, M. M., Olivato, J. B., Grossmann, M. V. E., Bona, E., & Yamashita, F. (2012). Effects of the incorporation of saturated fatty acids on the mechanical and barrier properties of biodegradable films. Journal of Applied Polymer Science, 124(5), 3695-3703. http://dx.doi.org/10.1002/app.35250.

21. Nobrega, M. M., Olivato, J. B., Bilck, A. P., Grossmann, M. V. E., & Yamashita, F. (2012). Glycerol with different purity grades derived from biodiesel: Effect on the mechanical and viscoelastic properties of biodegradable strands and films. Materials Science and Engineering C, 32(8), 2220-2222. http://dx.doi.org/10.1016/j.msec.2012.06.005.

22. Bilck, A. P., Grossmann, M. V. E., & Yamashita, F. (2010). Biodegradable mulch films for strawberry production. Polymer Testing, 29(4), 471-476. http://dx.doi.org/10.1016/j.polymertesting.2010.02.007.

23. Olivato, J. B., Grossmann, M. V. E., Yamashita, F., Nobrega, M. M., Scapin, M. R. S., Eiras, D., & Pessan, L. (2011). Compatibilisation of starch/poly(butylene adipate co-terephthalate) blends in blown films. International Journal of Food Science & Technology, 46(9), 1934-1939. http://dx.doi.org/10.1111/j.1365-2621.2011.02704.x.

24. Costa, D. L. M. G. (2008). Produção por extrusão de filmes de alto teor de amido termoplástico de mandioca com poli(butileno adipato co-tereftalato) (PBAT) (Masters dissertation). Universidade Estadual de Londrina, Londrina.

25. Melo, C., Garcia, P. S., Grossmann, M. V. E., Yamashita, F., Dall’Antônia, L. H., & Mali, S. (2011). Properties of extruded xanthan-starch-clay nanocomposite films. Brazilian Archives of Biology and Technology, 54(6), 1223-1233. http://dx.doi.org/10.1590/S1516-89132011000600019.

26. Białopiotrowicz, T. (2003). Wettability of starch gel films. Food Hydrocolloids, 17(2), 141-147. http://dx.doi.org/10.1016/S0268-005X(02)00046-2.

27. Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., Alves, J., & Scamparini, A. R. P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: Effect of additives and deacetylated xanthan gum. Food Hydrocolloids, 19(2), 341-349. http://dx.doi.org/10.1016/j.foodhyd.2004.07.006.

28. Demirgöz, D., Elvira, C., Mano, J. F., Cunha, A. M., Piskin, E., & Reis, R. L. (2000). Chemical modification of starch based on biodegradable polymeric blends: effects on water uptake, degradation behavior and mechanical properties. Polymer Degradation & Stability, 70(2), 161-170. http://dx.doi.org/10.1016/S0141-3910(00)00102-6.
588371c37f8c9d0a0c8b4a57 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections