Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1733
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Zinc Layered Hydroxide Salts: Intercalation and Incorporation into Low-Density Polyethylene

Jaeger, Silvia; Zimmermann, Ademir; Zawadzki, Sônia F.; Wypych, Fernando; Amico, Sandro C.

Downloads: 0
Views: 202

Abstract

In this study, polymer composites using low-density polyethylene (LDPE) and layered hydroxide salts (LHS) were synthesized. The following compositions of LHS were obtained Zn5(OH)8(An-)2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3-) or hydrophobic (A = DDS- – dodecyl sulfate or DBS- – dodecyl benzene sulfonate). Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy. A variable amount of filler was then incorporated into the LDPE via extrusion, which was then injection molded to obtain specimens for evaluating tensile properties (Young’s modulus, tensile strength, strain at break and toughness). For comparison, the sodium salts of the surfactants (NaDDS and NaDBS) were also used as fillers in LDPE. The X-ray diffraction results indicated that the hydrophobic LHS were exfoliated in the polymer matrix, whereas the hydrophilic LHS was only delaminated. In the LDPE composites, melting and crystallization temperatures were nearly constant, along with the crystallinity indexes. The mechanical properties were mainly varied when the organophilic LHS was used. Overall, fillers based on LHS, especially those containing hydrophobic anions, may be interesting alternatives in the production of reinforced thermoplastics.

Keywords

Layered hydroxide salts, nanocomposite, low-density polyethylene.

References

1. Dorigato, A. & Pegoretti, A. - Eng. Fract. Mech., 79, p.213 (2012). http://dx.doi.org/10.1016/j.engfracmech.2011.10.014.

2. Coelho, P. H. D. L. & Morales, A. R. - Polímeros, 23, p.410 (2013).

3. Miranda, V. R. & Carvalho, A. J. F. - Polímeros, 21, p.353 (2011). http://dx.doi.org/10.1590/S0104-14282011005000067.

4. Wang, L. J.; Xu, X. Y.; Evans, D. G. & Li, D. Q. - Ind. Eng. Chem. Res., 49, p.5339 (2010). http://dx.doi.org/10.1021/ie9016978.

5. Pires, M.; Petzhold, C. L.; Santos, R. V.; Perão, L. & Chies, A. P. - Polímeros, 24, p.237 (2014).

6. Lu, Z.; He, C. & Chung, T. S. - Polymer (Guildf.)., 42, p.5233 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00806-5.

7. Peng, D.; Wei, C. & Baojun, Q. - Prog. Nat. Sci., 16, p.573 (2006). http://dx.doi.org/10.1080/10020070612330037.

8. Arizaga, G. G. C.; Satyanarayana, K. G. & Wypych, F. - Solid State Ion., 178, p.1143 (2007). http://dx.doi.org/10.1016/j.ssi.2007.04.016.

9. Marangoni, R.; Ramos, L. P. & Wypych, F. - J. Colloid Interface Sci., 330, p.303 (2009). http://dx.doi.org/10.1016/j.jcis.2008.10.081. PMid:19081109

10. Marangoni, R.; Mikowski, A. & Wypych, F. - J. Colloid Interface Sci., 351, p.384 (2010). http://dx.doi.org/10.1016/j.jcis.2010.08.006. PMid:20804981

11. Silva, M. L. N.; Marangoni, R.; Cursino, A. C. T.; Schreiner, W. H. & Wypych, F. - Mater. Chem. Phys., 134, p.392 (2012). http://dx.doi.org/10.1016/j.matchemphys.2012.03.007.

12. Silva, M. L. N.; Marangoni, R.; Silva, A. H. & Wypych, F. - Polímeros, 23, p.248 (2013).

13. Zimmermann, A.; Jaerger, S.; Zawadzki, S. F. & Wypych, F. - J. Polym. Res., 20, p.224 (2013).

14. Muksing, N.; Magaraphan, R.; Coiai, S. & Passaglia, E. - Express Polym. Lett., 5, p.428 (2011). http://dx.doi.org/10.3144/expresspolymlett.2011.42.

15. Coiai, S.; Scatto, M.; Conzatti, L.; Azzurri, F.; Andreotti, L.; Salmini, E.; Stagnaro, P.; Zanolin, A.; Cicogna, F. & Passaglia, E. - Polym. Adv. Technol., 22, p.2285 (2011). http://dx.doi.org/10.1002/pat.1759.

16. Ye, L. & Wu, Q. H. - J. Applied Pol. Sci., 123, p.316 (2012). http://dx.doi.org/10.1002/app.33770.

17. Costa, F. R.; Wagenknecht, U. & Heinrich, G. - Polym. Degrad. Stabil., 92, p.1813 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.07.009.

18. Arizaga, G. G. C.; Mangrich, A. S.; Gardolinski, J. E. F. C. & Wypych, F. - J. Colloid Interface Sci., 320, p.168 (2008). http://dx.doi.org/10.1016/j.jcis.2007.12.038.

19. Stählin, W. & Oswald, H. R. - J. Solid State Chem., 3, p.252 (1971). http://dx.doi.org/10.1016/0022-4596(71)90037-5.

20. Ardanuy, M. & Velasco, J. I. - Appl. Clay Sci., 51, p.341 (2011). http://dx.doi.org/10.1016/j.clay.2010.12.024.

21. Majoni, S.; Su, S. & Hossenlopp, J. M. - Polym. Degrad. Stabil., 95, p.1593 (2010). http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.033.

22. Sun, Z.; Jin, L.; Shi, W.; Wei, M.; Evans, D.G. & Duan, X. - Langmuir, 27, p.7113 (2011). http://dx.doi.org/10.1021/la200846j.

23. Kandare, E.; Chigwada, G.; Wang, D. Y.; Wilkie, C. A. & Hossenlopp, J. M. - Polym. Degrad. Stabil., 91, p.1781 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2005.11.021.

24. Biswick, T.; Jones, W.; Pacuła, A.; Serwicka, E. & Podobinski, J. - J. Solid State Chem., 180, p.1171 (2007). http://dx.doi.org/10.1016/j.jssc.2007.01.012.

25. Morawiec, J.; Pawlak, A.; Slouf, M.; Galeski, A.; Piorkowska, E. & Krasnikowa, N. - Eur. Polym. J., 41, p.1115 (2005). http://dx.doi.org/10.1016/j.eurpolymj.2004.11.011.

26. Youssef, A. M.; Bujdosó, T.; Hornok, V.; Papp, S.; Hakim, A. F. A. & Dékány, I. - Appl. Clay Sci., 77-78, p.46 (2013). http://dx.doi.org/10.1016/j.clay.2013.03.011.

27. Kiliaris, P. & Papaspyrides, C. D. - Prog. Polym. Sci., 35, p.902 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.001.

28. Ye, L. & Wu, Q. H. - J. Applied Pol. Sci., 123, p.316 (2012). http://dx.doi.org/10.1002/app.33770.
588371b67f8c9d0a0c8b4a1f polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections