Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1728
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Estudo das propriedades elétricas e térmicas de compósitos nanoestruturados de poli(sulfeto de fenileno) reforçados com nanotubos de carbono

Electrical and Thermal study of carbon nanotubes reinforced poly (phenylene sulfide) nanostructured composites

Ribeiro, Bruno; Botelho, Edson C.; Costa, Michelle L.

Downloads: 0
Views: 543

Resumo

Neste trabalho o comportamento de cristalização e a condutividade elétrica de compósitos nanoestruturados de poli(sulfeto de fenileno) reforçado com nanotubos de carbono de paredes múltiplas obtidos através da técnica de mistura em fusão foram estudados. A incorporação do nanoreforço na matriz polimérica foi responsável por um aumento da cristalinidade devido ao fenômeno de nucleação heterogênea. A condutividade elétrica do PPS apresentou um aumento de 11 ordens de magnitude quando 2,0 m/m% de MWCNT foram adicionados a matriz polimérica. Além disso, o limite de percolação elétrica encontrado para este sistema foi de 1,4 m/m% de MWCNT, revelando a formação de uma rede condutiva tridimensional no interior da matriz polimérica.

Palavras-chave

PPS, MWCNT, cristalização, propriedades elétricas, limite de percolação elétrica.

Abstract

In this work, the crystallization behavior and electrical conductivity of multiwalled carbon nanotubes reinforced poly (phenylene sulfide) nanostructured composites obtained by melt mixing were investigated. The incorporation of nanofiller in polymeric matrix was responsible for an increase in crystallinity due heterogeneous nucleation phenomenon. The electrical conductivity of PPS showed an increase by 11 orders of magnitude when 2.0 wt% of MWCNT was considered. Moreover, the electrical percolation threshold found on this system was 1.4 wt%, suggesting the formation of three‑dimensional conductive network within the polymeric matrix.

Keywords

PPS, MWCNT, crystallization, electrical properties, electrical percolation threshold.

References

1. Ramoa, S. D. A. S. (2011). Preparação e caracterização de compósitos de poliuretano termoplástico com negro de fumo condutor e nanotubos de carbono (Dissertação de mestrado). Universidade Federal de Santa Catarina, Florianópolis.

2. Rahmat, M., & Hubert, P. (2011). Carbon nanotube–polymer interactions in nanocomposites: a review. Composites Science and Technology, 72(1), 72-84. http://dx.doi.org/10.1016/j.compscitech.2011.10.002.

3. Yang, J., Xu, T., Lu, A., Zhang, Q., Tan, H., & Fu, Q. (2009). Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by meltcompounding. Composites Science and Technology, 69(2), 147-153. http://dx.doi.org/10.1016/j.compscitech.2008.08.030.

4. Spitalsky, Z., Tasis, D., Papagelis, K., & Galiots, C.(2010). Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35(3), 357-401. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003.

5. Castillo, F. Y., Socher, R., Krause, B., Headrick, R., Grady, B. P., Prada-Silvy, R., & Pötschke, P. (2011). Electrical, mechanical, and glass transition behavior of polycarbonatebased nanocomposites with different multi-walled carbonnanotubes. Polymer, 52(17), 3835-3845. http://dx.doi.org/10.1016/j.polymer.2011.06.018.

6. Botelho, E. C. (2011). Processamento e caracterização de compósitos de resina fenólica com nanotubos de carbono com aplicações aeroespaciais (Tese de Livre-Docência). Universidade Estadual Paulista, Guaratinguetá.

7. Bose, S., Khare, R. A., & Moldenaers, P. (2010). Assessing the strengths and weaknesses of various types of pre-treatmentsof carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer, 51(5), 975-993. http://dx.doi.org/10.1016/j.polymer.2010.01.044.

8. Wang, W., Lu, F., Veca, L. M., Meziani, M. J., Wang, X., Cao, L., Gu, L., & Sun, Y. P. (2011). Carbon Nanotubes and Nanocomposites for Electrical and Thermal Applications. New York: John-Wiley. http://dx.doi.org/10.1002/9781119951438.eibc0320.

9. Grady, B. P. (2011). Carbon nanotube polymer composites: Manufacture, Properties, and Applications. New York: John-Wiley. http://dx.doi.org/10.1002/9781118084380.

10. Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. http://dx.doi.org/10.1016/j.compscitech.2008.06.018.

11. Abbasi, S., Derdouri, A., & Carreau, P. J. (2011). Properties of microinjection molding of polymer multiwalled carbon nanotube conducting composites. Polymer Engineering and Science, 51(5), 992-1003. http://dx.doi.org/10.1002/pen.21904.

12. Abbasi, S., Carreau, P. J., & Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties. Polymer, 51(4), 922-935. http://dx.doi.org/10.1016/j.polymer.2009.12.041.

13. Sumfleth, J., Prehn, K., Wichmann, M. H. G., Wedekind, S., & Schulte, K. (2010). A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD- and arc-grown multi-wall carbon nanotubes. Composites Science and Technology, 70(1), 173-180. http://dx.doi.org/10.1016/j.compscitech.2009.10.007.

14. Bangarusampath, D. S., Ruckdäschel, H., Altstädt, V., Sandler, J. K. W., Garray, D., & Shaffer, M. S. P. (2009). Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Polymer, 50(24), 5803-5811. http://dx.doi.org/10.1016/j.polymer.2009.09.061.

15. Socher, R., Krause, B., Muller, M. T., Boldt, R., & Pötschke, P. (2012). The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer, 53(2), 495-504. http://dx.doi.org/10.1016/j.polymer.2011.12.019.

16. Bangarusampath, D. S., Ruckdäschel, H., Altstädt, V., Sandler, J. K. W., Garray, D., & Shaffer, M. S. P. (2009). Rheological and electrical percolation in melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Chemical Physics Letters, 482(1-3), 105-109. http://dx.doi.org/10.1016/j.cplett.2009.09.064.

17. Carballeira, P. (2010). Mechanical and electrical properties of carbon nanofiber-ceramic nanoparticle-polymer composites (Tese de doutorado). Technischen Universit Kaiserslautern, Kaiserslautern.

18. Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 69(10), 1505-1515. http://dx.doi.org/10.1016/j.compscitech.2008.07.007.

19. Pötschke, P., Pegel, S., Claes, M., & Bonduel, D. (2008). A Novel Strategy to Incorporate Carbon Nanotubes into Thermoplastic Matrices. Macromolecular Rapid Communications, 29(3), 244-251. http://dx.doi.org/10.1002/marc.200700637.

20. Díez-Pascual, A. M., Guan, J., Simard, B., & Gómez-Fatou, M. A. (2012). Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: II – Mechanical properties, electrical and thermal conductivity. Composites. Part A: Applied Science and Manufacturing, 43(6), 1007-1015. http://dx.doi.org/10.1016/j.compositesa.2011.11.003.

21. Li, L., Li, B., Hood, M. A., & Li, C. Y. (2009). Carbon nanotube induced polymer crystallization: The formation of nanohybrid shish–kebabs. Polymer, 50(4), 953-965. http://dx.doi.org/10.1016/j.polymer.2008.12.031.

22. Kim, J. Y., Park, H. S., & Kim, S. H. (2006). Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-isothermal crystallization. Polymer, 47(4), 1379-1389. http://dx.doi.org/10.1016/j.polymer.2005.12.042.

23. Díez-Pascual, A. M., Ashrafi, B., Naffakh, M., González-Domínguez, J. M., Johnston, A., Simard, B., Martinez, M. T., & Gómez-Fatou, M. A. (2011). Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates. Carbon, 49(8), 2817-2833. http://dx.doi.org/10.1016/j.carbon.2011.03.011.

24. Wu, D., Wu, L., Yu, G., Xu, B., & Zhang, M. (2008). Crystallization and thermal behavior of multiwalled carbon nanotube/poly(butylenes terephthalate) composites. Polymer Engineering and Science, 48(6), 1057-1067. http://dx.doi.org/10.1002/pen.21049.

25. Chen, E. C., & Wu, T. M. (2008). Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multi-walled carbon nanotube composites. Journal of Polymer Science. Part B, Polymer Physics, 46(2), 158-169. http://dx.doi.org/10.1002/polb.21351.

26. Wang, B., Sun, G., Liu, J., He, X., & Li, J. (2006). Crystallization behavior of carbon nanotubes-filled polyamide 1010. Journal of Applied Polymer Science, 100(5), 3794-3800. http://dx.doi.org/10.1002/app.23805.

27. Wu, D., Wu, L., Zhou, W., Yang, T., & Zhang, M. (2009). Study on physical properties of multiwalled carbon nanotube/poly(phenylene sulfide) composites. Polymer Engineering and Science, 49(9), 1727-1735. http://dx.doi.org/10.1002/pen.21403.

28. Díez-Pascual, A. M., Naffakh, M., Marco, C., & Ellis, G. (2012). Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Composites. Part A, Applied Science and Manufacturing, 43(4), 603-612. http://dx.doi.org/10.1016/j.compositesa.2011.12.026.

29. Levon, K., Margolina, A., & Pathashinsky, A. Z. (1993). Multiple percolation in conducting polymer blends. Macromolecules, 26(15), 4061-4063. http://dx.doi.org/10.1021/ma00067a054.

30. Dai, K., Xu, X.-B., & Li, Z.-M. (2007). Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer, 48(3), 849-859. http://dx.doi.org/10.1016/j.polymer.2006.12.026.

31. Noll, A., & Burkhart, T. (2011). Morphological characterization and modelling of electrical conductivity of multi-walled carbon nanotube/poly(p-phenylene sulfide) nanocomposites obtained by twin screw extrusion. Composites Science and Technology, 71(4), 499-505. http://dx.doi.org/10.1016/j.compscitech.2010.12.026.

32. Han, M. S., Lee, Y. K., Lee, H. S., Yun, C. H., & Kim, W. N. (2009). Electrical, morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylene sulfide) by melt mixing. Chemical Engineering Science, 64(22), 4649-4656. http://dx.doi.org/10.1016/j.ces.2009.02.026.

33. Yang, J., Xu, T., Lu, A., Zhang, Q., & Fu, Q.-J. (2008). Electrical properties of poly(phenylene sulfide)/multiwalled carbon nanotube composites prepared by simple mixing and compression. Applied Polymer Science, 109(2), 720-726. http://dx.doi.org/10.1002/app.28098.

34. Jang, Y. K., Jang, P. G., Kim, J. K., Park, M., & Yoon, G. (2009). Electrical Properties of Imidazole-Modified MWNT/Polyphenylenesulfide Composites Prepared by Melt Mixing. Journal of Nanoscience and Nanotechnology, 9(7), 4180-4186. http://dx.doi.org/10.1166/jnn.2009.M28.

35. Hardwick, D. P. A., Naylor, S. L., Bujkiewicz, S., Fromhold, T. M., Fowler, D., Patanè, A., Eaves, L., Krokhin, A. A., Wilkinson, P. B., Henini, M., & Sheard, F. W. (2006). Effect of inter-miniband tunneling on current resonances due to the formation of stochastic conduction networks in superlattices. Physica E, Low-Dimensional Systems and Nanostructures, 32(1-2), 285-288. http://dx.doi.org/10.1016/j.physe.2005.12.054.
588371bb7f8c9d0a0c8b4a34 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections