Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1727
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

Campos, Valquíria; Tcacenco, Celize Maia

Downloads: 0
Views: 482

Abstract

The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for environmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol–1) is thermally more stable than 3,6 ionene (E = 115.52 kJ mol–1) complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.

Keywords

3,6-ionene, 3,6-dodecylionene, synthesis, adsorption of benzene.

References

1. Rembaum, A., Baumgartner, W., & Eisenberg, A. (1968). Aliphatic ionenes. Journal of Polymer Science. Part B: Polymer Letters, 6(3), 159-171. http://dx.doi.org/10.1002/pol.1968.110060302.

2. Darley, H. C. H., & Gray, G. R. (1988). Composition and properties of drilling and completion fluids (5th ed.). Texas: Gulf Publishing Company.

3. Ross, C. S., & Shannon, E. V. (1926). Minerals of bentonite and related clays and their physical properties. Journal of the American Ceramic Society, 9(2), 77-96. http://dx.doi.org/10.1111/j.1151-2916.1926.tb18305.x.

4. Paiva, L. B., Morales, A. R., & Díaz, F. R. V. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42(1-2), 8-24. http://dx.doi.org/10.1016/j.clay.2008.02.006.

5. Dentel, S. K., Bottero, J. Y., Khatib, K., Demougeot, H., Duguet, J. P., & Anselme, C. (1995). Sorption of tannic acid, phenol and. 2,4,5 trichlorophenol on organoclays. Water Research, 29(5), 1273-1280. http://dx.doi.org/10.1016/0043-1354(94)00277-E.

6. Smith, J. A., & Galan, A. (1995). Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environmental Science & Technology, 29(3), 685-692. http://dx.doi.org/10.1021/es00003a016. PMid:22200277

7. Springman, K., Mayura, K., McDonald, T., Donnelly, K. C., Kubena, L. F., & Phillips, T. D. (1999). Organoclay adsorption of wood-preserving waste from groundwater. Analytical and toxicological evaluations. Toxicological and Environmental Chemistry, 71(1-2), 247-259. http://dx.doi.org/10.1080/02772249909358796.

8. Alther, G. (2002). Using organoclays to enhance carbonfiltration. Waste Management, 22(5), 507-513. http://dx.doi.org/10.1016/S0956-053X(01)00045-9. PMid:12092760

9. Koh, S., & Dixon, J. B. (2001). Preparation and application oforganominerals as sorbents of phenol, benzene and toluene.Applied Clay Science, 18(3-4), 111-122. http://dx.doi.org/10.1016/S0169-1317(00)00040-5.

10. Rodriguez-Sarmiento, D. C., & Pinzón-Bello, J. A. (2001). Adsorption of sodium dodecylbenzene sulfonate on organophilic bentonites. Applied Clay Science, 18(3-4), 173-181. http://dx.doi.org/10.1016/S0169-1317(00)00022-3.

11. Lee, S. Y., & Kim, S. J. (2002). Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. Applied Clay Science, 22(1-2), 55-63. http://dx.doi.org/10.1016/S01691317(02)00113-8.

12. Redding, A. Z., Burns, S. E., Upson, R. T., & Anderson, E. F. (2002). Organoclay sorption of benzene as a function of total organic carbon content. Journal of Colloid and Interface Science, 250(1), 261-264. http://dx.doi.org/10.1006/jcis.2001.8205. PMid:16290659

13. Barker, J. F., Hubbard, C. E., Lemon, L. A., & Vooro, K. A. (1992). The influence of methanol in gasoline fuels on the formation of dissolved plumes, and the fate and natural remediation of methanol and BTEX dissolved in groundwater. In P. T. Kostecki & E. J. Calabrese (Eds.), Hydrocarbon contaminated soils and groundwater (pp. 264-273). New York: Lewis Publishers.

14. Corseuil, H. X., Monier, A. L., Fernandes, M., Schneider, M. R., Nunes, C. C., do Rosario, M., & Alvarez, P. J. J. (2011). BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation. Environmental Science & Technology, 45(8), 3422-3429. http://dx.doi.org/10.1021/es104055q. PMid:21410252

15. Campos, V., Souto, L. S., Medeiros, T. A. M., Toledo, S. P., Sayeg, I. J., Ramos, R. L., & Shinzato, M. C. (2014). Assessment of the removal capacity, tolerance, and anatomical adaptation of different plant species to benzene contamination. Water, Air, and Soil Pollution, 225(8), 2033-2045. http://dx.doi.org/10.1007/s11270-014-2033-7.

16. Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29(11), 1702-1706. http://dx.doi.org/10.1021/ac60131a045.

17. Ghiaci, M., Kia, R., & Kalbasi, R. J. (2004). Investigation of thermodynamic parameters of cetyl pyridinium bromide sorption onto ZSM-5 and natural clinoptilolite. The Journal of Chemical Thermodynamics, 36(2), 95-100. http://dx.doi.org/10.1016/j.jct.2003.09.002.

18. Hagi, H., Ooishi, O., & Tanaka, R. (1979). Polymeric amines and ammonium salts. In Proceedings of the International Symposium on Polymeric Amines and Ammonium Salts. New York: Pergamon Press.

19. Soldi, V., Erismann, N. M., & Quina, F. H. (1988). Micellemimetic ionene polyelectrolytes. Journal of the American Chemical Society, 110(15), 5137-5143. http://dx.doi.org/10.1021/ja00223a037.

20. Tcacenco, C. M., & Quina, F. H. (2007). Fusion-fission transport of probes and quenchers in microdomains of an amphiphilic ionene polyelectrolyte. Photochemistry and Photobiology, 83(3), 542-546. http://dx.doi.org/10.1562/2006-09-09-RA-1036. PMid:17576370

21. Breen, C. (1999). The characterisation and use of polycationexchanged bentonites. Applied Clay Science, 15(1–2), 187-219. http://dx.doi.org/10.1016/S0169-1317(99)00024-1.

22. Costa Filho, A. P., Gomes, A. S., & Lucas, E. F. (2005). Preparação e caracterização de organobentonita modificada com ionenos alifáticos. Polímeros: Ciência e Tecnologia, 15(3), 212-217. http://dx.doi.org/10.1590/S0104-14282005000300012.

23. Churchman, G. L. (2002). Formation of complexes between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants. Applied Clay Science, 21(3-4), 177-189. http://dx.doi.org/10.1016/S0169-1317(01)00099-0.

24. Fang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers, 47(3), 245252. http://dx.doi.org/10.1016/S0144-8617(01)00187-4.

25. Campos, V., Dweck, J., Nascimento, C. A. O., & Tcacenco, C. M. (2013). Thermal stability of ionene polymers. Journal of Thermal Analysis and Calorimetry, 112(3), 1221-1229. http://dx.doi.org/10.1007/s10973-012-2694-7.
588371bd7f8c9d0a0c8b4a3c polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections