Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Polyurethane/Poly(2-(Diethyl Amino)Ethyl Methacrylate) blend for drug delivery applications

Echeverría, María Gabriela; Pardini, Oscar Ricardo; Debandi, María Valeria; François, Nora Judit; Daraio, Marta Edith; Amalvy, Javier Ignacio

Downloads: 0
Views: 212


A pH-sensitive blend of polyurethane (PU) and poly(2-(diethyl amino)ethyl methacrylate (PDEA) with good film-forming capacity was prepared from the corresponding aqueous dispersions. The polymer matrix was first characterized by using FTIR, DSC, water vapor transmission and water swelling capacity at different pHs. The drug release profile of films was evaluated using a vertical Franz Cell and theophylline as model drug. The water swelling degree increases from 54 to 180% when the pH of the medium is changed from 6 to 2, demonstrating the pH-responsive behavior of the film. The in-vitro release studies indicate that an anomalous transport mechanism governs the theophylline release.


polyurethanes, drug delivery systems, stimuli-sensitive polymers, swelling, theophylline.


1. Utracki, L. A. (2002). Polymer Blends Handbook (Vol. 1). Dordrecht/Boston/London: Kluwer Academic Publishers.

2. Puga, A. M., Rey-Rico, A., Magariños, B., Alvarez-Lorenzo, C., & Concheiro, A. (2012). Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomaterialia, 8(4), 1507-1518. http://dx.doi.org/10.1016/j.actbio.2011.12.020. PMid:22251935.

3. Song, F., Wang, X. L., & Wang, Y. Z. (2011). Poly (N-isopropylacrylamide)/poly (ethylene oxide) blend nanofibrous scaffolds: thermo-responsive carrier for controlled drug release. Colloid and Surface B, 88(2), 749-754. doi:10.16/j.colsurfb.2011.09.038.

4. Alhnan, M. A., & Basit, A. W. (2011). Engineering polymer blend microparticles: an investigation into the influence of polymer blend distribution and interaction. European Journal of Pharmaceutical Sciences, 42(1-2), 30-36. http://dx.doi.org/10.1016/j.ejps.2010.10.003. PMid:20950685.

5. Sahiner, N., & Ilgin, P. (2010). Synthesis and characterization of soft polymeric nanoparticles and composites with tunable properties. Journal of Polymer Science. Part A, Polymer Chemistry, 48(22), 5239-5246. http://dx.doi.org/10.1002/pola.24324.

6. Tang, Y., Teng, Z., Liu, Y., Tian, Y., Sun, J., Wang, S., Wang, C., Wang, J., & Lu, G. (2014). Cytochrome C capped mesoporous silica nanocarriers for pH-sensitive and sustained drug release. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2(27), 4356-4362. http://dx.doi.org/10.1039/c4tb00497c.

7. DeMuth, P., Hurley, M., Wu, C., Galanie, S., Zachariah, M. R., & Deshong, P. (2011). Mesoscale porous silica as drug delivery vehicles: Synthesis, characterization, and pH-sensitive release profiles. Microporous and Mesoporous Materials, 141(1-3), 128-134. http://dx.doi.org/10.1016/j.micromeso.2010.10.035.

8. Gan, Q., Lu, X., Yuan, Y., Qian, J., Zhou, H., Lu, X., Shi, J., & Liu, C. (2011). A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials, 32(7), 1932-1942. http://dx.doi.org/10.1016/j.biomaterials.2010.11.020. PMid:21131045.

9. He, P., Liu, H., Tang, Z., Deng, M., Yang, Y., Pang, X., & Chen, X. (2013). Poly(ester amide) blend microspheres for oral insulin delivery. International Journal of Pharmaceutics, 455(1-2), 259-266. http://dx.doi.org/10.1016/j.ijpharm.2013.07.022. PMid:23876502.

10. Tran, P. H. L., Tran, T. T. D., Vo, V. T., & Lee, B. J. (2013). pH-Sensitive polymeric systems for controlling drug release in nocturnal asthma treatment. In 4th International Conference on Biomedical Engineering Proceedings (pp. 304-308). Vietnam: Springer.

11. Zhang, T., Sturgis, T. F., & Youan, B. B. C. (2011). pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. European Journal of Pharmaceutics and Biopharmaceutics, 79(3), 526-536. http://dx.doi.org/10.1016/j.ejpb.2011.06.007. PMid:21736940.

12. Dumitriu, R. P., Oprea, A. M., & Vasile, C. (2009). Kinetics of swelling and drug release from PNIPAAm/alginate stimuli responsive hydrogels. Solid State Phenomena, 154, 17-22. 10.4028/www.scientific.net/SSP.154.17.

13. Lin, W., Nie, S., Zhong, Q., Yang, Y., Cai, C., Wang, J., & Zhang, L. (2014). Amphiphilic miktoarm star copolymer (PCL)3-(PDEAEMA-b-PPEGMA)3 as pH-sensitive micelles in the delivery of anticancer drug. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2(25), 4008-4020. http://dx.doi.org/10.1039/c3tb21694b.

14. Liu, Y., Cui, Y., & Liao, M. (2014). pH- and temperature-responsive IPN hydrogels based on soy protein and poly(N-isopropylacrylamide-co-sodium acrylate). Journal of Applied Polymer Science, 131(2), 39781-39788. http://dx.doi.org/10.1002/app.39781.

15. Zhang, W., He, J., Liu, Z., Ni, P., & Zhu, X. (2010). Biocompatible and pH-responsive triblock copolymer mPEG-b-PCL-b-PDMAEMA: Synthesis, self-assembly, and application. Journal of Polymer Science. Part A, Polymer Chemistry, 48(5), 1079-1091. http://dx.doi.org/10.1002/pola.23863.

16. Sun, J. T., Hong, C. Y., & Pan, C. Y. (2010). Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release. The Journal of Physical Chemistry C, 114(29), 12481-12486. http://dx.doi.org/10.1021/jp103982a.

17. Tambourgi, E. B., Paulino, A. T., Guilherme, M. R., Muniz, E. C., & Rubira, A. F. (2009). Morfologia de hidrogéis IPN termo-sensíveis e pH responsivos para aplicação biomaterial na cultura de células. Polímeros: Ciência e Tecnologia, 19(2), 105-110. http://dx.doi.org/10.1590/S0104-14282009000200006.

18. Bae, Y. H., Okano, T., & Kim, W. S. (1990). Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water. Journal of Polymer Science. Part B, Polymer Physics, 28(6), 923-936. http://dx.doi.org/10.1002/polb.1990.090280609.

19. Inomata, H., Goto, S., & Saito, S. (1990). Phase transition of N-substituted acrylamide gels. Macromolecules, 23(22), 4887-4888. http://dx.doi.org/10.1021/ma00224a023.

20. Inomata, H., Wada, N., Yagi, Y., Goto, S., & Saito, S. (1995). Swelling behaviours of N-alkylacrylamide gels in water: effects of copolymerization and crosslinking density. Polymer, 36(4), 875-877. http://dx.doi.org/10.1016/0032-3861(95)93120-B.

21. Zhang, X., Wu, D., & Chu, C. C. (2004). Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials, 25(19), 4719-4730. http://dx.doi.org/10.1016/j.biomaterials.2003.11.040. PMid:15120518.

22. Schild, H. G. (1992). Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 17(2), 163-249. http://dx.doi.org/10.1016/0079-6700(92)90023-R.

23. Pardini, O. R., Amalvy, J. I., François, N., & Daraio, M. E. (2007). Properties of pH-dependent tertiary amine-based gels as potential drug delivery matrices. Journal of Applied Polymer Science, 104(6), 4035-4040. http://dx.doi.org/10.1002/app.26037.

24. Moldenhauer, M. G., & Nairn, J. G. (1990). Formulation parameters affecting the preparation and properties of microencapsulated ion-exchange resins containing theophylline. Journal of Pharmaceutical Sciences, 79(8), 659-666. http://dx.doi.org/10.1002/jps.2600790802. PMid:2231326.

25. Motycka, S., Newth, C. J., & Nairn, J. G. (1985). Preparation and evaluation of microencapsulated and coated ion-exchange resin beads containing theophylline. Journal of Pharmaceutical Sciences, 74(6), 643-646. http://dx.doi.org/10.1002/jps.2600740612. PMid:4020651.

26. Amighi, K., & Moës, A. (1997). Influence of curing conditions on the drug release rate from eudragit NE30D film coated sustained-release theophylline pellets. S.T.P. Pharmaceutical Sciences, 7, 141-147.

27. François, N. J., Rojas, A. M., Daraio, M. E., & Bernik, D. L. (2003). Dynamic rheological measurements and drug release kinetics in swollen scleroglucan matrices. Journal of Controlled Release, 90(3), 355-362. http://dx.doi.org/10.1016/S0168-3659(03)00204-9. PMid:12880702.

28. Ward, J. H., & Peppas, N. A. (2001). Preparation of controlled release systems by free-radical UV polymerizations in the presence of a drug. Journal of Controlled Release, 71(2), 183-192. http://dx.doi.org/10.1016/S0168-3659(01)00213-9. PMid:11274750.

29. Shaheen, S. M., & Yamaura, K. (2002). Preparation of theophylline hydrogels of atactic poly(vinyl alcohol)/NaCl/H2O system for drug delivery system. Journal of Controlled Release, 81(3), 367-377. http://dx.doi.org/10.1016/S0168-3659(02)00085-8. PMid:12044575.

30. Amalvy, J. I., Wanless, E. J., Li, Y., Michailidou, V., Armes, S. P., & Duccini, Y. (2004). Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. Langmuir, 20(21), 8992-8999. http://dx.doi.org/10.1021/la049156t. PMid:15461478.

31. Pardini, O. R., & Amalvy, J. I. (2008). FTIR, 1H-NMR spectra, and thermal characterization of water-based polyurethane/acrylic hybrids. Journal of Applied Polymer Science, 107(2), 1207-1214. http://dx.doi.org/10.1002/app.27188.

32. American Society for Testing and Materials. (1995). ASTM E96: standard test methods for water vapor transmission of material. Philadelphia.

33. François, N. J., & Daraio, M. E. (2009). Preparation and characterization of scleroglucan drug delivery films: The effect of freeze-thaw cycling. Journal of Applied Polymer Science, 112(4), 1994-2000. http://dx.doi.org/10.1002/app.29651.

34. Peruzzo, P. J., Anbinder, P. S., Pardini, O. R., Costa, C. A., Leite, C. A., Galembeck, F., & Amalvy, J. I. (2010). Polyurethane/acrylate hybrids: Effects of the acrylic content and thermal treatment on the polymer properties. Journal of Applied Polymer Science, 116(5), 2694-2705. http://dx.doi.org/10.1002/app.31795.

35. Tarulli, S., & Baran, E. J. (1993). Spectroscopic behaviour of the two C=O stretching vibrations in free and complexed theophylline. Journal of Raman Spectroscopy : JRS, 24(3), 139-141. http://dx.doi.org/10.1002/jrs.1250240305.

36. Shibayama, M., Morimoto, M., & Nomura, S. (1994). Phase Separation Induced Mechanical Transition of Poly(N-isopropylacrylamide)/Water Isochore Gels. Macromolecules, 27(18), 5060-5066. http://dx.doi.org/10.1021/ma00096a031.

37. Alupei, I. C., Popa, M., Hamcerencu, M., & Abadie, M. J. M. (2002). Superabsorbant hydrogels based on xanthan and poly(vinyl alcohol): 1. The study of the swelling properties. European Polymer Journal, 38(11), 2313-2320. http://dx.doi.org/10.1016/S0014-3057(02)00106-4.

38. Peppas, N. A., & Franson, N. M. (1983). The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers. Journal of Polymer Science: Polymer Physics, 21, 983-997. http://dx.doi.org/10.1002/pol.1983.180210614.

39. Brazel, C. S., & Peppas, N. A. (1999). Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer, 40(12), 3383-3398. http://dx.doi.org/10.1016/S0032-3861(98)00546-1.

40. Satish, C. S., & Shivakumar, H. G. (2007). Dynamic swelling and in vitro release of insulin from semiinterpenetrating polymer networks of poly(vinyl alcohol) and poly(methacrylic acid). Indian Journal of Pharmaceutical Sciences, 69(1), 58-63. http://dx.doi.org/10.4103/0250-474X.32109.

41. Bosch, P., Fernández, A., Salvador, E. F., Corrales, T., Catalina, F., & Peinado, C. (2005). Polyurethane-acrylate based films as humidity sensors. Polymer, 46(26), 12200-12209. http://dx.doi.org/10.1016/j.polymer.2005.10.113.

42. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. http://dx.doi.org/10.1016/0168-3659(87)90034-4.

43. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1), 37-42. http://dx.doi.org/10.1016/0168-3659(87)90035-6.

44. Hsiue, G. H., Liao, C. M., & Lin, S. Y. (1998). Effect of drug-polymer interaction on the release characteristics of methacrylic acid copolymer microcapsules containing theophylline. Artificial Organs, 22(8), 651-656. http://dx.doi.org/10.1046/j.1525-1594.1998.04804.x. PMid:9702316.
588371c37f8c9d0a0c8b4a58 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections