Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil
Schröpfer, Suellen Brasil; Bottene, Marcia Karpinski; Bianchin, Liane; Robinson, Luiz Carlos; Lima, Viviane de; Jahno, Vanusca Dalosto; Barud, Hernane da Silva; Ribeiro, Sidney José Lima
http://dx.doi.org/10.1590/0104-1428.1712
Polímeros: Ciência e Tecnologia, vol.25, n2, p.154-160, 2015
Abstract
In recent years, the inappropriate disposal of polymeric materials has increased due to industrial development and increase of population consumption. This problem may be minimized by using biodegradable polymers, such as bacterial cellulose and poly(hydroxybutyrate), from renewable resources. This work was aimed at monitoring and evaluating degradation of bacterial cellulose, vegetable cellulose and poly(3-hydroxybutyrate) using Thermogravimetric Analysis and Scanning Electron Microscopy. Controlled mass polymer samples were buried in pots containing soil. Samples were removed in 30 day intervals up to 180 days. The results show that the mass of the polymer increased in the first month when in contact with the soil but then it was degraded as evidenced by mass loss and changes on the sample surface.
Keywords
biodegradation, Poly(3-hydroxybutyrate), bacterial cellulose, vegetable cellulose, environmental impact.
References
1. Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (2012). Panorama dos resíduos sólidos no Brasil 2012. São Paulo: ABRELPE. Retrieved from http://www.abrelpe.org.br/Panorama/panorama2012.pdf
2. Wu, C.-S. (2009). Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polymer Degradation & Stability, 94(7), 1076-1084. http://dx.doi.org/10.1016/j.polymdegradstab.2009.04.002.
3. Singh, S., Mohanty, A. K., Sugie, T., Takai, Y., & Hamada, H. (2008). Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Composites. Part A, Applied Science and Manufacturing, 39(5), 875-886. http://dx.doi.org/10.1016/j.compositesa.2008.01.004.
4. Falcone, D. M. B., Agnelli, J. A. M., & Faria, L. I. L. (2007). Panorama setorial e perspectivas na área de polímeros biodegradáveis. Polímeros: Ciência e Tecnologia, 17(1), 5-9. http://dx.doi.org/10.1590/S0104-14282007000100005.
5. Gorna, K., & Gogolewski, S. (2003). The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polymer Degradation & Stability, 79(3), 465-474. http://dx.doi.org/10.1016/S0141-3910(02)00362-2.
6. Huda, M. S., Drzal, L. T., Misra, M., Mohanty, A. K., Williams, K., & Mielewski, D. F. (2005). A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Industrial & Engineering Chemistry Research, 44(15), 5593-5601. http://dx.doi.org/10.1021/ie0488849.
7. Bhardwaj, R., Mohanty, A. K., Drzal, L. T., Pourboghrat, F., & Misra, M. (2006). Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co3-hydroxyvalerate) bioplastic. Biomacromolecules, 7(6), 20442051. http://dx.doi.org/10.1021/bm050897y. PMid:16768432
8. Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. http://dx.doi.org/10.1016/j.progpolymsci.2006.03.002.
9. Sadi, R. K. (2010). Estudo da compatibilização e da degradação de blendas polipropileno/poli (3-hidroxibutirato)(PP/PHB) (Tese de doutorado). Escola Politécnica, Universidade de São Paulo, São Paulo.
10. Coutinho, B. C., Miranda, G. B., Sampaio, G., Souza, L. B. S., Santana, W. J., & Coutinho, H. D. M. (2004). A importância e as vantagens do polihidroxibutirato (plástico biodegradável). Holos, 20, 76-81. http://dx.doi.org/10.15628/holos.2004.49.
11. Franchetti, S. M. M., & Marconato, J. C. (2006). Biodegradable polymers - a partial way for decreasing the amount of plastic waste. Quimica Nova, 29(4), 811-816. http://dx.doi.org/10.1590/S0100-40422006000400031.
12. Calvão, P. S. (2009). Obtenção e caracterização de misturas do polímero biodegradável P[3HB] e seu copolímero P[3HB-co3HV] com elastômeros (Tese de doutorado). Escola Politécnica, Universidade de São Paulo, São Paulo.
13. Czaja, W. K., Young, D. J., Kawecki, M., & Brown, R. M. Jr (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8(1), 1-12. http://dx.doi.org/10.1021/bm060620d. PMid:17206781
14. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Polymer Science, 44(22), 3358-3393. http://dx.doi.org/10.1002/anie.200460587.
15. Barud, H. S., Barrios, C., Regiani, T., Marques, R. F. C., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y., & Ribeiro, S. J. L. (2008). Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering, 28(4), 515-518. http://dx.doi.org/10.1016/j.msec.2007.05.001.
16. Barud, H. S., Ribeiro, S. J. L., Carone, C. L. P., Ligabue, R., Einloft, S., Queiroz, P. V. S., Borges, A. P. B., & Jahno, V. D. J. (2013). Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polímeros: Ciência e Tecnologia, 23(1), 135-142. http://dx.doi.org/10.1590/S010414282013005000018.
17. Sannino, A., Demitri, C., & Madaghiele, M. (2009). Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials, 2(2), 353-373. http://dx.doi.org/10.3390/ma2020353.
18. Mei, L. H. I., & Mariani, P. D. S. C. (2005). Visão geral sobre polímeros ou plásticos ambientalmente degradáveis. Campinas: Unicamp.
19. Harada, J., & Manosso, L. (2008). Polímeros de fontes renováveis, biodegradáveis e compostáveis. In Anais do Seminário de Reciclagem e Valorização dos Resíduos Sólidos. Porto Alegre.
20. Okelo, A. P. (2012). Mechanical, thermal, diffusion and degradation properties of high density polyethylene ‘and’ cellulose blends (Dissertação de mestrado). Kenyatta University, Nairobi.
21. Kalka, S., Huber, T., Steinberg, J., Baronian, K., Müssig, J., & Staiger, M. P. (2014). Biodegradability of all-cellulose composite laminates. Composites. Part A, Applied Science and Manufacturing, 59, 37-44. http://dx.doi.org/10.1016/j.compositesa.2013.12.012.
22. Azzaoui, K., Lamhamdi, A., Mejdoubi, M., Berrabah, M., Hammouti, B., Elidrissi, A., Fouda, M. M. G., & Al-Deyab, S. S. (2014). Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohydrate Polymers, 111, 41-46. http://dx.doi.org/10.1016/j.carbpol.2014.04.058. PMid:25037327
23. Mousavioun, P., George, A. G., & Doherty, W. O. S. (2012). Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polymer Degradation & Stability, 97(7), 1114-1122. http://dx.doi.org/10.1016/j.polymdegradstab.2012.04.004.
24. Poletto, M., Pistor, V., Zeni, M., & Zattera, A. J. (2011). Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation & Stability, 96(4), 679-685. http://dx.doi.org/10.1016/j.polymdegradstab.2010.12.007.
25. Conesa, J. A., Caballero, J. A., Marcilla, A. R., & Font, R. (1995). Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta, 254(15), 175-192. http://dx.doi.org/10.1016/0040-6031(94)02102-T.
26. Soares, S., Camino, G., & Levchik, S. (1995). Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polymer Degradation & Stability, 49(2), 275-283. http://dx.doi.org/10.1016/0141-3910(95)87009-1.
27. Capart, R., Khezami, L., & Burnham, A. K. (2004). Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta, 417(1), 79-89. http://dx.doi.org/10.1016/j.tca.2004.01.029.
28. Quiévy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M., & Devaux, J. (2010). Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation & Stability, 95(3), 306-314. http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.020.
29. Cunha-Santino, M. B. (2003). Atividade enzimática, cinética e modelagem matemática da decomposição de Utricularia breviscapa da lagoa do Óleo (Estação Ecológica de Jataí, Luiz Antônio-SP) (Tese de doutorado). Universidade Federal de São Carlos, São Carlos.
30. Kopinke, F.-D., Remmler, M., & Mackenzie, K. (1996). Thermal decomposition of biodegradable polyesters—I: Poly(βhydroxybutyric acid). Polymer Degradation & Stability, 52(1), 25-38. http://dx.doi.org/10.1016/0141-3910(95)00221-9.
31. Boyandin, A. N., Prudnikova, S. V., Karpov, V. A., Ivonin, V. N., Đỗ, N. L., Nguyễn, T. H., Lê, T. M. H., Filichev, N. L., Levin, A. L., Filipenko, M. L., Volova, T. G., & Gitelson, I. I. (2013). Microbial degradation of polyhydroxyalkanoates in tropical soils. International Biodeterioration & Biodegradation, 83, 77-84. http://dx.doi.org/10.1016/j.ibiod.2013.04.014.
32. Rosa, D. S., Guedes, C. G. F., & Bardi, M. A. G. (2007). Evaluation of thermal, mechanical and morphological properties of PCL/CA and PCL/CA/PE-g-GMA blends. Polymer Testing, 26(2), 209-215. http://dx.doi.org/10.1016/j.polymertesting.2006.10.003.
33. Quental, A. C., Carvalho, F. P., Tada, E. S., & Felisberti, M. I. (2010). Blends of PHB and its copolymers: miscibility and compatibility. Quimica Nova, 33(2), 438-446. http://dx.doi.org/10.1590/S0100-40422010000200035.
34. Campos, A., Marconato, J. C., & Martins-Franchetti, S. M. (2011). Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate. Brazilian Archives of Biology and Technology, 54(6), 1367-1378. http://dx.doi.org/10.1590/S1516-89132011000600024.
35. Tao, J., Song, C., Cao, M., Hu, D., Liu, L., Liu, N., & Wang, S. (2009). Thermal properties and degradability of poly(propylene carbonate)/poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends. Polymer Degradation & Stability, 94(4), 575583. http://dx.doi.org/10.1016/j.polymdegradstab.2009.01.017.
2. Wu, C.-S. (2009). Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polymer Degradation & Stability, 94(7), 1076-1084. http://dx.doi.org/10.1016/j.polymdegradstab.2009.04.002.
3. Singh, S., Mohanty, A. K., Sugie, T., Takai, Y., & Hamada, H. (2008). Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Composites. Part A, Applied Science and Manufacturing, 39(5), 875-886. http://dx.doi.org/10.1016/j.compositesa.2008.01.004.
4. Falcone, D. M. B., Agnelli, J. A. M., & Faria, L. I. L. (2007). Panorama setorial e perspectivas na área de polímeros biodegradáveis. Polímeros: Ciência e Tecnologia, 17(1), 5-9. http://dx.doi.org/10.1590/S0104-14282007000100005.
5. Gorna, K., & Gogolewski, S. (2003). The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polymer Degradation & Stability, 79(3), 465-474. http://dx.doi.org/10.1016/S0141-3910(02)00362-2.
6. Huda, M. S., Drzal, L. T., Misra, M., Mohanty, A. K., Williams, K., & Mielewski, D. F. (2005). A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Industrial & Engineering Chemistry Research, 44(15), 5593-5601. http://dx.doi.org/10.1021/ie0488849.
7. Bhardwaj, R., Mohanty, A. K., Drzal, L. T., Pourboghrat, F., & Misra, M. (2006). Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co3-hydroxyvalerate) bioplastic. Biomacromolecules, 7(6), 20442051. http://dx.doi.org/10.1021/bm050897y. PMid:16768432
8. Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. http://dx.doi.org/10.1016/j.progpolymsci.2006.03.002.
9. Sadi, R. K. (2010). Estudo da compatibilização e da degradação de blendas polipropileno/poli (3-hidroxibutirato)(PP/PHB) (Tese de doutorado). Escola Politécnica, Universidade de São Paulo, São Paulo.
10. Coutinho, B. C., Miranda, G. B., Sampaio, G., Souza, L. B. S., Santana, W. J., & Coutinho, H. D. M. (2004). A importância e as vantagens do polihidroxibutirato (plástico biodegradável). Holos, 20, 76-81. http://dx.doi.org/10.15628/holos.2004.49.
11. Franchetti, S. M. M., & Marconato, J. C. (2006). Biodegradable polymers - a partial way for decreasing the amount of plastic waste. Quimica Nova, 29(4), 811-816. http://dx.doi.org/10.1590/S0100-40422006000400031.
12. Calvão, P. S. (2009). Obtenção e caracterização de misturas do polímero biodegradável P[3HB] e seu copolímero P[3HB-co3HV] com elastômeros (Tese de doutorado). Escola Politécnica, Universidade de São Paulo, São Paulo.
13. Czaja, W. K., Young, D. J., Kawecki, M., & Brown, R. M. Jr (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8(1), 1-12. http://dx.doi.org/10.1021/bm060620d. PMid:17206781
14. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Polymer Science, 44(22), 3358-3393. http://dx.doi.org/10.1002/anie.200460587.
15. Barud, H. S., Barrios, C., Regiani, T., Marques, R. F. C., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y., & Ribeiro, S. J. L. (2008). Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering, 28(4), 515-518. http://dx.doi.org/10.1016/j.msec.2007.05.001.
16. Barud, H. S., Ribeiro, S. J. L., Carone, C. L. P., Ligabue, R., Einloft, S., Queiroz, P. V. S., Borges, A. P. B., & Jahno, V. D. J. (2013). Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polímeros: Ciência e Tecnologia, 23(1), 135-142. http://dx.doi.org/10.1590/S010414282013005000018.
17. Sannino, A., Demitri, C., & Madaghiele, M. (2009). Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials, 2(2), 353-373. http://dx.doi.org/10.3390/ma2020353.
18. Mei, L. H. I., & Mariani, P. D. S. C. (2005). Visão geral sobre polímeros ou plásticos ambientalmente degradáveis. Campinas: Unicamp.
19. Harada, J., & Manosso, L. (2008). Polímeros de fontes renováveis, biodegradáveis e compostáveis. In Anais do Seminário de Reciclagem e Valorização dos Resíduos Sólidos. Porto Alegre.
20. Okelo, A. P. (2012). Mechanical, thermal, diffusion and degradation properties of high density polyethylene ‘and’ cellulose blends (Dissertação de mestrado). Kenyatta University, Nairobi.
21. Kalka, S., Huber, T., Steinberg, J., Baronian, K., Müssig, J., & Staiger, M. P. (2014). Biodegradability of all-cellulose composite laminates. Composites. Part A, Applied Science and Manufacturing, 59, 37-44. http://dx.doi.org/10.1016/j.compositesa.2013.12.012.
22. Azzaoui, K., Lamhamdi, A., Mejdoubi, M., Berrabah, M., Hammouti, B., Elidrissi, A., Fouda, M. M. G., & Al-Deyab, S. S. (2014). Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohydrate Polymers, 111, 41-46. http://dx.doi.org/10.1016/j.carbpol.2014.04.058. PMid:25037327
23. Mousavioun, P., George, A. G., & Doherty, W. O. S. (2012). Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polymer Degradation & Stability, 97(7), 1114-1122. http://dx.doi.org/10.1016/j.polymdegradstab.2012.04.004.
24. Poletto, M., Pistor, V., Zeni, M., & Zattera, A. J. (2011). Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation & Stability, 96(4), 679-685. http://dx.doi.org/10.1016/j.polymdegradstab.2010.12.007.
25. Conesa, J. A., Caballero, J. A., Marcilla, A. R., & Font, R. (1995). Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta, 254(15), 175-192. http://dx.doi.org/10.1016/0040-6031(94)02102-T.
26. Soares, S., Camino, G., & Levchik, S. (1995). Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polymer Degradation & Stability, 49(2), 275-283. http://dx.doi.org/10.1016/0141-3910(95)87009-1.
27. Capart, R., Khezami, L., & Burnham, A. K. (2004). Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta, 417(1), 79-89. http://dx.doi.org/10.1016/j.tca.2004.01.029.
28. Quiévy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M., & Devaux, J. (2010). Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation & Stability, 95(3), 306-314. http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.020.
29. Cunha-Santino, M. B. (2003). Atividade enzimática, cinética e modelagem matemática da decomposição de Utricularia breviscapa da lagoa do Óleo (Estação Ecológica de Jataí, Luiz Antônio-SP) (Tese de doutorado). Universidade Federal de São Carlos, São Carlos.
30. Kopinke, F.-D., Remmler, M., & Mackenzie, K. (1996). Thermal decomposition of biodegradable polyesters—I: Poly(βhydroxybutyric acid). Polymer Degradation & Stability, 52(1), 25-38. http://dx.doi.org/10.1016/0141-3910(95)00221-9.
31. Boyandin, A. N., Prudnikova, S. V., Karpov, V. A., Ivonin, V. N., Đỗ, N. L., Nguyễn, T. H., Lê, T. M. H., Filichev, N. L., Levin, A. L., Filipenko, M. L., Volova, T. G., & Gitelson, I. I. (2013). Microbial degradation of polyhydroxyalkanoates in tropical soils. International Biodeterioration & Biodegradation, 83, 77-84. http://dx.doi.org/10.1016/j.ibiod.2013.04.014.
32. Rosa, D. S., Guedes, C. G. F., & Bardi, M. A. G. (2007). Evaluation of thermal, mechanical and morphological properties of PCL/CA and PCL/CA/PE-g-GMA blends. Polymer Testing, 26(2), 209-215. http://dx.doi.org/10.1016/j.polymertesting.2006.10.003.
33. Quental, A. C., Carvalho, F. P., Tada, E. S., & Felisberti, M. I. (2010). Blends of PHB and its copolymers: miscibility and compatibility. Quimica Nova, 33(2), 438-446. http://dx.doi.org/10.1590/S0100-40422010000200035.
34. Campos, A., Marconato, J. C., & Martins-Franchetti, S. M. (2011). Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate. Brazilian Archives of Biology and Technology, 54(6), 1367-1378. http://dx.doi.org/10.1590/S1516-89132011000600024.
35. Tao, J., Song, C., Cao, M., Hu, D., Liu, L., Liu, N., & Wang, S. (2009). Thermal properties and degradability of poly(propylene carbonate)/poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends. Polymer Degradation & Stability, 94(4), 575583. http://dx.doi.org/10.1016/j.polymdegradstab.2009.01.017.