Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Extraction of poly(3-hydroxybutyrate) from Spirulina LEB 18 for developing nanofibers

Morais, Michele Greque de; Stillings, Christopher; Dersch, Roland; Rudisile, Markus; Pranke, Patricia; Costa, Jorge Alberto Vieira; Wendorff, Joachim

Downloads: 0
Views: 446


The objective of this study was to extract poly(3-hydroxybutyrate) (PHB) from the microalgal biomass of Spirulina LEB 18 for the development of nanofibers by electrospinning method. Different extraction methods were tested. The maximum yield obtained was 30.1 ± 2%. It was possible to produce nanofibers with diameters between 826 ± 188 nm and 1,675 ± 194 nm. An increase in the nanofiber diameter occurred when a flow rate of 4.8 μL min-1 and a capillary diameter of 0.90 mm were used. The nanofibers produced had up to 34.4% of biomass additives, i.e., non-PHB materials. This can be advantageous, because it enables the conservation of microalgal biomass compounds with bioactive functions.


biomass, electrospinning, nanofibers, PHB, Spirulina.


1. Jau, M. H., Yew, S. P., Toh, P. S., Chong, A. S., Chu, W. L., Phang, S. M., Najimudin, N., & Sudesh, K. (2005). Biosynthesis and mobilization of poly(3-hydroxybutyrate) [P(3HB)] by Spirulina platensis. International Journal of Biological Macromolecules, 36(3), 144-151. http://dx.doi.org/10.1016/j.ijbiomac.2005.05.002. PMid:16005060

2. Casarin, S., Agnelli, J., Malmonge, S., & Rosário, F. (2013). Blendas PHB/copoliésteres biodegradáveis – biodegradação em solo. Polímeros. Ciência e Tecnologia, 23(1), 115-122. http://dx.doi.org/10.1590/S0104-14282013005000003.

3. Choi, J., & Lee, S. (1999). Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Applied Microbiology and Biotechnology, 51(1), 13-21. http://dx.doi.org/10.1007/s002530051357.

4. Hahn, S. K., Chang, Y. K., Kim, B. S., & Chang, H. N. (1994). Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology and Bioengineering, 44(2), 256-261. http://dx.doi.org/10.1002/bit.260440215. PMid:18618692

5. Morais, M. G., Stillings, C., Dersch, R., Rudisile, M., Pranke, P., Costa, J. A., & Wendorff, J. (2010). Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresource Technology, 101(8), 2872-2876. http://dx.doi.org/10.1016/j.biortech.2009.11.059. PMid:20056537

6. Santos, C., Bretas, R., Branciforte, M., & Canova, T. (2011). Preparação e caracterização de nanofibras de nanocompósitos de poliamida 6,6 e argila montmorilonita. Polímeros: Ciência e Tecnologia, 21(5), 398-408. http://dx.doi.org/10.1590/S010414282011005000068.

7. Greiner, A., & Wendorff, J. H. (2008). Functional self-assembled nanofibers by electrospinning. Advances in Polymer Science, 219, 107-171. http://dx.doi.org/10.1007/12_2008_146.

8. Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., & Ma, Z. (2005). An introduction to electrospinning and nanofibers. United States of America: World Scientific Publishing Co. Pte. Ltd. Danvers.

9. Morais, M. G., Reichert, C. C., Dalcanton, F., Durante, A. J., Marins, L. F., & Costa, J. A. (2008). Isolation and characterization of a new Arthrospira strain. Zeitschrift für Naturforschung C, 63(1-2), 144-150. http://dx.doi.org/10.1515/znc-2008-1-226. PMid:18386504

10. Costa, J. A., Colla, L. M., & Duarte Filho, P. F. (2004). Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 92(3), 237-241. http://dx.doi.org/10.1016/j.biortech.2003.09.013. PMid:14766156

11. Morais, M. G., Radmann, E. M., Andrade, M. R., Teixeira, G. G., Brusch, L. R. F., & Costa, J. A. V. (2009). Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture, 294(1–2), 60-64. http://dx.doi.org/10.1016/j.aquaculture.2009.05.009.

12. Tsuji, H., & Ikada, Y. (1996). Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly(DL-lactide) and poly(ε-caprolactone). Journal of Applied Polymer Science, 60(13), 2367-2375. http://dx.doi.org/10.1002/(SICI)1097-4628(19960627)60:13<2367::AIDAPP8>3.0.CO;2-C.

13. Panda, B., Jain, P., Sharma, L., & Mallick, N. (2006). Optimization of cultural and nutritional conditions for accumulation of polyβ-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresource Technology, 97(11), 1296-1301. http://dx.doi.org/10.1016/j.biortech.2005.05.013. PMid:16046119

14. Nishioka, N., Nakai, K., Miyake, M., Asada, Y., & Taya, M. (2001). Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphatelimited conditions. Biotechnology Letters, 23(14), 1095-1099. http://dx.doi.org/10.1023/A:1010551614648.

15. Sombatmankhong, K., Suwantong, O., Waleetorncheepsawat, S., & Supaphol, P. (2006). Electrospun fiber mats of poly(3hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends. Journal of Polymer Science. Part B, Polymer Physics, 44(19), 2923-2933. http://dx.doi.org/10.1002/polb.20915.

16. Kim, G. M., Michler, G. H., Henning, S., Radusch, H. J., & Wutzler, A. (2007). Thermal and spectroscopic characterization of microbial poly(3-hydroxybutyrate) submicrometer fibers prepared by electrospinning. Journal of Applied Polymer Science, 103(3), 1860-1867. http://dx.doi.org/10.1002/app.25348.

17. Matsui, M. S., Muizzuddin, N., Arad, S., & Marenus, K. (2003). Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Applied Biochemistry and Biotechnology, 104(1), 13-22. http://dx.doi.org/10.1385/ABAB:104:1:13. PMid:12495202

18. Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7(1), 3-15. http://dx.doi.org/10.1007/BF00003544.

19. Mishima, T., Murata, J., Toyoshima, M., Fujii, H., Nakajima, M., Hayashi, T., Kato, T., & Saiki, I. (1998). Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clinical & Experimental Metastasis, 16(6), 541-550. http://dx.doi.org/10.1023/A:1006594318633. PMid:9872601

20. Suwantong, O., Waleetorncheepsawat, S., Sanchavanakit, N., Pavasant, P., Cheepsunthorn, P., Bunaprasert, T., & Supaphol, P. (2007). In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3hydroxyvalerate) fiber mats. International Journal of Biological Macromolecules, 40(3), 217-223. http://dx.doi.org/10.1016/j.ijbiomac.2006.07.006. PMid:16949148

21. Choi, J. S., Lee, S. W., Jeong, L., Bae, S. H., Min, B. C., Youk, J. H., & Park, W. H. (2004). Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrateco-3-hydroxyvalerate). International Journal of Biological Macromolecules, 34(4), 249-256. http://dx.doi.org/10.1016/j.ijbiomac.2004.06.001. PMid:15374681

22. Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 84568466. http://dx.doi.org/10.1021/ma020444a.

23. Son, W. K., Youk, J. H., Lee, T. S., & Park, W. P. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 29592966. http://dx.doi.org/10.1016/j.polymer.2004.03.006.
588371bd7f8c9d0a0c8b4a3e polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections