Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

Suresh, G.; Jayakumari, L. S.

Downloads: 0
Views: 505


A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester) and PU (Polyurethane) and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU) reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength), Impact & Head Deflection Test (HDT). The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.


glass fiber, carbon fiber, morphology, IPN laminate, mechanical properties, Fiber Reinforced Plastics (FRP).


1. Pirvu, A., Gardner, D. J., & Lopez-Anido, R. (2004). Carbon fiber-vinyl ester composite reinforcement of wood using the VARTM/SCRIMP fabrication process. Composites Part A: Applied Science and Manufacturing, 35(11), 1257-1265. http://dx.doi.org/10.1016/j.compositesa.2004.04.003.

2. Wonderly, C., Grenestedt, J., Fernlund, G., & Cěpus, E. (2005). Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Composites Part B: Engineering, 36(5), 417-426. http://dx.doi.org/10.1016/j.compositesb.2005.01.004.

3. Marouani, S., Curtil, L., & Hamelin, P. (2012). Ageing of carbon/epoxy and carbon/vinylester composites used in the reinforcement and/or the repair of civil engineering structures. Composites Part B: Engineering, 43(4), 2020-2030. http://dx.doi.org/10.1016/j.compositesb.2012.01.001.

4. Santiuste, C., Sanchez-Saez, S., & Barbero, E. (2010). Residual flexural strength after low-velocity impact in glass/polyester composite beams. Composite Structures, 92(1), 25-30. http://dx.doi.org/10.1016/j.compstruct.2009.06.007.

5. Raquez, J. M., Deléglise, M., Lacrampe, M. F., & Krawczak, P. (2010). Thermosetting (bio)materials derived from renewable resources: a critical review. Progress in Polymer Science, 35(4), 487-509.

6. Reinforced plastics. Bright future for vinyl ester resins in corrosion applications (2009, May, 1). Retrieved from http://www.reinforcedplastics.com.

7. Cristea, M., Ibanescu, S., Cascaval, C. N., & Rosu, D. (2009). Dynamic Mechanical Analysis of Polyurethane-Epoxy Interpenetrating Polymer Networks. High Performance Polymers, 21(5), 608-623. http://dx.doi.org/10.1177/0954008309339940.

8. Husic, S., Javani, I., & Petrovic, Z. S. (2005). Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Composites Science and Technology, 65(1), 19-25. http://dx.doi.org/10.1016/j.compscitech.2004.05.020.

9. Tang, D., Zhang, X., Liu, L., & Qiang, L. (2009). Simultaneous and gradient IPN of polyurethane/vinyl ester resin: morphology and mechanical properties. Journal of Nanomaterials, 2009, 1-6.

10. Qin, C., Jin, Z., Bai, X., Jiang, H., & Cai, W. (2007). Compatibility of polyurethane/(vinyl ester resin)(ethyl acrylate) Interpenetrating polymer network. Polymer Journal, 39(12), 1365-1372.

11. Fan, L. H., Hu, C. P., Ying, S. K., & Vol, P. (1996). Thermal analysis during the formation of polyurethane and vinyl ester resin interpenetrating polymer networks. Polymer, 37(6), 975-981.

12. Ramis, X., Cadenato, A., Morancho, J. M., & Salla, J. M. (2001). Polyurethane–unsaturated polyester interpenetrating polymer networks: thermal and dynamic mechanical thermal behaviour. Polymer, 42(23), 9469-9479. http://dx.doi.org/10.1016/S0032-3861(01)00492-X.

13. Hua, F. J., & Hu, C. P. (2000). Interpenetrating polymer networks of epoxy resin and urethane acrylate resin: 2. morphology and mechanical property. European Polymer Journal, 36(1), 27-33. http://dx.doi.org/10.1016/S0014-3057(99)00027-0.

14. Lin, S. P., Han, J. L., Yeh, J. T., Chang, F. C., & Hsieh, K. H. (2007). Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks. European Polymer Journal, 43(3), 996-1008. http://dx.doi.org/10.1016/j.eurpolymj.2006.12.001.

15. Qin, C. L., Zhao, D. Y., Bai, X. D., Zhang, X. G., Zhang, B., Jin, Z., & Niu, H. J. (2006). Vibration damping properties of gradient polyurethane/vinyl ester resin interpenetrating polymer network. Materials Chemistry and Physics, 97(2-3), 517-524. http://dx.doi.org/10.1016/j.matchemphys.2005.10.022.

16. Qin, C.-L., Cai, W.-M., Cai, J., Tang, D.-Y., Zhang, J.-S., & Qin, M. (2004). Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network. Materials Chemistry and Physics, 85(2-3), 402-409. http://dx.doi.org/10.1016/j.matchemphys.2004.01.019.

17. American Society for Testing and Materials. (2002). ASTM D 3039/D3039M: standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM.

18. MinakshiSultania, S. B., Yadaw, J. S. P., & Srivastava, D. (2010). Laminates based on vinyl ester resin and glass fabric: A study on the thermal, mechanical and morphological characteristics. Materials Science and Engineering A, 527(18-19), 4560-4570. http://dx.doi.org/10.1016/j.msea.2010.04.038.

19. Kuan, C.-F., Kuan, H.-C., Ma, C.-C. M., & Huang, C.-M. (2006). Mechanical, thermal and morphological properties of water-crosslinked wood flour reinforced linear low-density polyethylene composites. Composites Part A: Applied Science and Manufacturing, 37(10), 1696-1707. http://dx.doi.org/10.1016/j.compositesa.2005.09.020.

20. American Society for Testing and Materials. (2002). ASTM D 790-03: standard test method for unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken: ASTM.

21. Dukhan, N., Rayess, N., & Hadley, J. (2010). Characterization of aluminum foam – polypropylene interpenetrating phase composites: flexural test results. Mechanics of mechmat.2009.09.010.

22. Chen, C.-H., & Ma, C.-C. M. (1997). Pultrudedfibrereinforced PMMA/PU IPN composites: processability and mechanical properties. Composites Part A: Applied Science and Manufacturing, 28(1), 65-72. http://dx.doi.org/10.1016/S1359-835X(96)00096-6.

23. Spyrides, S. M. M., & Bastian, F. L. (2004). In vitro comparative study of the mechanical behavior of a composite matrix reinforced by two types of fibers (polyethylene and glass). Materials Science and Engineering C, 24(5), 671-677. http://dx.doi.org/10.1016/j.msec.2004.08.010.

24. American Society for Testing and Materials. (2002). ASTM D 6641/D 6641M: standard test method for determining the compressive properties of polymer matrix composite laminates using a Combined Loading Compression (CLC) test fixture. West Conshohocken: ASTM.

25. Zhu, J., Imam, A., Crane, R., Lozano, K., Khabashesku, V. N., & Barrera, E. V. (2007). Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 67(7), 1509-1517.

26. American Society for Testing and Materials. (2002). ASTM D2344-00: standard test method for short-beam strength of polymer matrix composite materials and their laminates. West Conshohocken: ASTM.

27. American Society for Testing and Materials. (2002). ASTM D 256 – 03: standard test methods for determining the izod pendulum impact resistance of plastics. West Conshohocken: ASTM.

28. Chen, S., Wang, Q., & Wang, T. (2012). Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Materials & Design, 38, 47-52. http://dx.doi.org/10.1016/j.matdes.2012.02.003.

29. American Society for Testing and Materials. (2002). ASTM D 648 – 01: standard test methods for deflection temperature of plastics under flexural load in the edgewise position. West Conshohocken: ASTM.

30. Wong, A. C.-Y. (2003). Heat deflection characteristics of polypropylene and polypropylene/polyethylene binary systems. Composites Part B: Engineering, 34(2), 199-208. http://dx.doi.org/10.1016/S1359-8368(02)00080-X.
588371ba7f8c9d0a0c8b4a2f polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections