Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

The use of lysozyme to prepare biologically active chitooligomers

Zimoch-Korzycka, Anna; Gardrat, Christian; Castellan, Alain; Coma, Véronique; Jarmoluk, Andrzej

Downloads: 0
Views: 547


Two types of crustacean commercial chitosans (CS1, CS2) were dissolved in lactic acid solutions, hydrolysed by lysozyme and finally fractioned by methanol solutions into two parts containing chito-oligomers (CS-O1, CS-O2). The antioxidant power and antimicrobial properties of both fractions were studied and compared with non-hydrolysed CS1 and CS2. The antioxidant properties were determined by the ferric ion reducing antioxidant power (FRAP) method while the bioactive properties were evaluated against a strain of Listeria monocytogenes. CS-O obtained from the solid fraction of the chito-oligomers solid fractions treated with 90% methanol showed the highest reducing power. Microbiological tests showed that CS-O exhibit higher antilisterial activity than CS.


antilisterial activity, antioxidant, chito-oligomers, chitosan, lysozyme.


1. Food and Agriculture Organization of the United Nations (2004). Risk assessment of Listeria monocytogenes in readyto-eat foods. Geneva: FAO. Retrieved from ftp://ftp.fao.org/docrep/fao/010/y5394e/y5394e00.pdf.

2. Coma, V. (2013). Polysaccharide-based Biomaterials with Antimicrobial and Antioxidant Properties. Polímeros, 23(3), 287-297.

3. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(1-2), 90-103. http://dx.doi.org/10.1016/j.meatsci.2007.07.035. PMid:22062099

4. Min, S., Harris, L. J., Han, J. H., & Krochta, J. M. (2005). Listeria monocytogenes inhibition by whey protein fi lms and coatings incorporating lysozyme. Journal of Food Protection, 68, 2317-2325.

5. Möller, H., Grelier, S., Pardon, P., & Coma, V. (2004). Antimicrobial and Physicochemical Properties of Chitosan−HPMC-Based Films. Journal of Agricultural and Food Chemistry, 52(21), 6585-6591. http://dx.doi.org/10.1021/jf0306690.

6. Muzzarelli, R. A. A. (1996). Chitosan-based dietary foods. Carbohydrate Polymers, 29(4), 309-316. http://dx.doi.org/10.1016/S0144-8617(96)00033-1.

7. Muzzarelli, R. A. A. (1999). Native, Industrial and fossil chitins. In: P. Jolles, & R.A.A. Muzarelli (Eds.), Chitin and chitinases (pp. 1-6). Berlin: Birkhauser.

8. Coma, V., Deschamps, A., & Martial-Gros, A. (2003). Bioactive Packaging Materials from Edible Chitosan Polymer—Antimicrobial Activity Assessment on Dairy-Related Contaminants. Journal of Food Science, 68(9), 2788-2792. http://dx.doi.org/10.1111/j.1365-2621.2003.tb05806.x.

9. Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703-714. http://dx.doi.org/10.1016/j.fm.2004.02.008.

10. Papineau, A. M., Hoover, D. G., Knorr, D., & Farkas, D. F. (1991). Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnology, 5(1), 45-57. http://dx.doi.org/10.1080/08905439109549790.

11. Lee, H. W., Park, Y. S., Jung, J. S., & Shin, W. S. (2002). Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 8(6), 319-324. http://dx.doi.org/10.1016/S1075-9964(03)00030-1. PMid:16887676

12. Roller, S., & Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47(1-2), 67-77. http://dx.doi.org/10.1016/S0168-1605(99)00006-9. PMid:10357275

13. Chung, Y. C., Wang, H. L., Chen, Y. M., & Li, S. L. (2003). Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technology, 88(3), 179-184. http://dx.doi.org/10.1016/S0960-8524(03)00002-6.PMid:12618038

14. Gao, Z., Shao, J., Sun, H., Zhong, W., Zhuang, W., & Zhang, Z. (2012). Evaluation of different kinds of organic acids and their antibacterial activity in Japanese Apricot fruits. African Journal of Agricultural Research, 7(35), 4911-4918. http://dx.doi.org/10.5897/AJAR12.1347.

15. Kang, S., Jang, A., Lee, S. O., Min, J. S., Kim, I. S., & Lee, M. (2003). Effect of Organic Acids on Microbial Populations and Salmonella typhimurium in Pork Loins. Asian-Australasian Journal of Animal Sciences, 16(1), 96-99. http://dx.doi.org/10.5713/ajas.2003.96.

16. Raftari, M., Jalilian, F. A., Abdulamir, A. S., Ghafurian, S., Sekawi, Z., Son, R., & Bakar, F. A. (2012). Antibacterial activity of organic acids on Salmonella and Listeria. Asia Life Science, 21(1), 13-30.

17. In, Y.-W., Kim, J.-J., Kim, H.-J., & Oh, S.-W. (2013). Antimicrobial Activities of Acetic Acid, Citric Acid and Lactic Acid against Shigella Species. Journal of Food Safety, 33(1), 79-85. http://dx.doi.org/10.1111/jfs.12025.

18. Tsukada, K., Matsumoto, T., Aizawa, K., Tokoro, A., Naruse, R., Suzuki, S., & Suzuki, M. (1990). Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Japanese Journal of Cancer Research: Gann, 81(3), 259-265. http://dx.doi.org/10.1111/j.1349-7006.1990.tb02559.x. PMid:2112529

19. Kendra, D. F., Christian, D., & Hadwiger, L. A. (1989). Chitosan oligomers from Fusarium solani/pea interactions, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiological and Molecular Plant Pathology, 35(3), 215-230. http://dx.doi.org/10.1016/0885-5765(89)90052-0.

20. Tikhonov, V. E., Stepnova, E. A., Babak, V. G., Yamskov, I. A., Palma-Guerrero, J., Jansson, H. B., Lopez-Llorca, L. V., Salinas, J., Gerasimenko, D. V., Avdienko, I. D., & Varlamov, V. P. (2006). Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydrate Polymers, 64(1), 66-72. http://dx.doi.org/10.1016/j.carbpol.2005.10.021.

21. Jeon, Y. J., & Kim, S. K. (2001). Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. Journal of Chitin and Chitosan, 6, 163-167.

22. Je, J. Y., & Kim, S. K. (2006). Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation. Bioorganic & Medicinal Chemistry, 14(17), 5989-5994. http://dx.doi.org/10.1016/j.bmc.2006.05.016. PMid:16725329

23. Feng, T., Du, Y., Li, J., Hu, Y., & Kennedy, J. F. (2008). Enhancement of antioxidant activity of chitosan by irradiation. Carbohydrate Polymers, 73(1), 126-132. http://dx.doi.org/10.1016/j.carbpol.2007.11.003.

24. Park, P. J., Je, J. Y., & Kim, S. K.-J. (2003). Free Radical Scavenging Activity of Chitooligosaccharides by Electron Spin Resonance Spectrometry. Journal of Agricultural and Food Chemistry, 51(16), 4624-4627. http://dx.doi.org/10.1021/jf034039+.

25. Ji, X., Zhong, Z., Chen, X., Xing, R., Liu, S., Wang, L., & Li, P. (2007). Preparation of 1,3,5-thiadiazine-2-thione derivatives of chitosan and their potential antioxidant activity in vitro. Bioorganic & Medicinal Chemistry Letters, 17(15), 4275-4279. http://dx.doi.org/10.1016/j.bmcl.2007.05.020. PMid:17531486

26. Il’ina, A. V., & Varlamov, V. P. (2004). Hydrolysis of Chitosan in Lactic Acid. Applied Biochemistry and Microbiology, 40(3), 300-303. http://dx.doi.org/10.1023/B:ABIM.0000025956.98250.30.

27. Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers, 62(4), 357-368. http://dx.doi.org/10.1016/j.carbpol.2005.08.012.

28. Mao, S., Shuai, X., Unger, F., Simon, M., Bi, D., & Kissel, T. (2004). The depolymerization of chitosan: effects on physicochemical and biological properties. International Journal of Pharmaceutics, 281(1-2), 45-54. http://dx.doi.org/10.1016/j.ijpharm.2004.05.019. PMid:15288342

29. Hai, L., Diep, T. B., Nagasawa, N., Yoshii, F., & Kume, T. (2003). Radiation depolymerization of chitosan to prepare oligomers. Nucl. Instrum. Methods Phys. Res. Sect. B, 208, 466-470. http://dx.doi.org/10.1016/S0168-583X(03)01181-9.

30. Ogawa, K., Chrispinas, O., Yoshida, N., Inoue, J., & Kariya, K. (2011). Chitosanase its manufacture, and manufacture of chito-oligosaccharides. JP Patent No. 2001069975. Tokyo: Kokai Tokyo Koho.

31. Mengíbar, M., Ganan, M., Miralles, B., Carrascosa, A. V., Martínez-Rodriguez, A. J., Peter, M. G., & Heras, A. (2011). Antibacterial activity of products of depolymerization of chitosans with lysozyme and chitosanase against Campylobacter jejuni. Carbohydrate Polymers, 84(2), 844-848. http://dx.doi.org/10.1016/j.carbpol.2010.04.042.

32. Kumar, A. B. V., & Tharanathan, R. N. (2004). A comparative study on depolymerization of chitosan by proteolytic enzymes. Carbohydrate Polymers, 58(3), 275-283. http://dx.doi.org/10.1016/j.carbpol.2004.07.001.

33. Velásquez, C. L., Medina, D., Torres, C., & Millán, E. (2007). Kinetic of the enzymatic degradation of chitosan using bromelain: a viscosimetric study. Avances en Química, 2(2), 25-32.

34. Jolles, P. (1996). Lysozymes: model enzymes in biochemistry and biology, EXS Basel. Boston: Birkhauser Verlag.

35. Kopeć, W., & Trziszka, T. (1997). Lysozyme and its characteristics. Part II. Isolation and practical applications. Przemysł Spożywczy, 51, 3637.

36. Amano, K., & Ito, E. (1978). The action of lysozyme on partially deacetylated chitin. European Journal of Biochemistry/FEBS, 85(1), 97-104. http://dx.doi.org/10.1111/j.1432-1033.1978. tb12216.x. PMid:639827

37. Kurita, K., Kaji, Y., Mori, T., & Nishiyama, Y. (2000). Enzymatic degradation of β-chitin: susceptibility and the influence of deacetylation. Carbohydrate Polymers, 42(1), 19-21. http://dx.doi.org/10.1016/S0144-8617(99)00127-7.

38. Nordtveit, R. J., Varum, K. M., & Smidsrod, O. (1996). Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydrate Polymers, 29(2), 163-167. http://dx.doi.org/10.1016/0144-8617(96)00003-3.

39. Vårum, K. M., Holme, H. K., Izume, M., Stokke, B. T., & Smidsrød, O. (1996). Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochimica et Biophysica Acta (BBA) - General Subjects, 1291(1), 5-15. http://dx.doi.org/10.1016/0304-4165(96)00038-4. PMid:8781519

40. Ambrozik, J., Zimoch, A., Jarmoluk, A., & Semeriak, K. (2011). Enzymatic degradation of chitosan with lysozyme or cellulase. Przemysł chemiczny, 5, 676-680.

41. Masschalck, B., & Michiels, C. W. (2003). Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical Reviews in Microbiology, 29(3), 191-214. http://dx.doi.org/10.1080/713610448. PMid:14582617

42. Park, S. I., Daeschel, M. A., & Zhao, Y. (2004). Functional Properties of Antimicrobial Lysozyme-Chitosan Composite Films. Journal of Food Science, 69(8), M215-M221. http://dx.doi.org/10.1111/j.1365-2621.2004.tb09890.x.

43. Rao, M. S., Chander, R., & Sharma, A. L. W. T. (2008). Synergistic effect of chitooligosaccharides and lysozyme for meat preservation, LWT. Food Science and Technology, 41, 1995-2001.

44. Daeschel, M. A., Musafija-Jeknic, T., Wu, Y., Bizzarri, D., & Villa, A. (2002). High-performance liquid chromatography analysis of lysozyme in wine. American Journal of Enology and Viticulture, 53(2), 154-157.

45. Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. http://dx.doi.org/10.1021/ac60147a030.

46. Cabrera, J. C., & Van Custem, P. (2005). Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal, 25(2), 165-172. http://dx.doi.org/10.1016/j.bej.2005.04.025.

47. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. http://dx.doi.org/10.1006/abio.1996.0292. PMid:8660627

48. Fen, L. L., Illias, R. Md., Kamaruddin, K., Maskat, M. Y., & Hassan, O. (2006). Development of rapid screening method for low-yielding chitosanase activity using Remazol Brilliant Blue-chitosan as substrate. Enzyme and Microbial Technology, 38(1-2), 215-219. http://dx.doi.org/10.1016/j. enzmictec.2005.06.006.

49. Lin, S. B., Lin, Y. C., & Chen, H. H. (2009). Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: Characterisation and antibacterial activity. Food Chemistry, 116(1), 47-53. http://dx.doi.org/10.1016/j. foodchem.2009.02.002.

50. Il’ina, A. V., Tkacheva, Y. V., & Varlamov, V. P. (2002). Depolymerization of High-Molecular-Weight Chitosan by the Enzyme Preparation Celloviridine G20x. Applied Biochemistry and Microbiology, 38(2), 112-115. http://dx.doi.org/10.1023/A:1014394013017.

51. Chen, M., Zhu, X., Li, Z., Guo, X., & Ling, P. (2010). Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in preparation of chitosan oligosaccharides (COS) with degree of polymerization (DP) 5–12 containing well-distributed acetyl groups. International Journal of Mass Spectrometry, 290(2-3), 94-99. http://dx.doi.org/10.1016/j.ijms.2009.12.008.

52. Sun, T., Yao, Q., Zhou, D., & Mao, F. (2008). Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorganic & Medicinal Chemistry Letters, 18(21), 5774-5776. http://dx.doi.org/10.1016/j.bmcl.2008.09.072. PMid:18842408

53. Jia, Z., & Shen, D. (2002). Effect of reaction temperature and reaction time on the preparation of low-molecularweight chitosan using phosphoric acid. Carbohydrate Polymers, 49(4), 393-396. http://dx.doi.org/10.1016/S0144-8617(02)00026-7.

54. Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10(2), 37-51. http://dx.doi.org/10.1016/S0924-2244(99)00017-5.

55. No, H. K., Youn, D. K., Byun, S. M., & Prinyawiwatkul, W. (2013). Physicochemical and functional properties of chitosans affected by storage periods of crab leg shell. International Journal of Food Science & Technology, 48(5), 1028-1034. http://dx.doi.org/10.1111/ijfs.12057.

56. Byun, S. M., No, H. K., Hong, J. H., Lee, S. I., & Prinyawiwatkul, W. (2013). Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells. International Journal of Food Science & Technology, 48(1), 136-142. http://dx.doi.org/10.1111/j.1365-2621.2012.03169.x.

57. Tompkin, R. B. (2002). Control of Listeria monocytogenes in the food-processing environment. Journal of food protection, 65(4), 709-725.
588371b97f8c9d0a0c8b4a2d polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections