Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.16016
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of Out-of-Autoclave (OOA) epoxy system

Guilherme, Fernanda; Cassu, Silvana Navarro; Diniz, Milton Faria; Leal, Tanila Penteado de Faria Gonzales; Sanches, Natália Beck; Dutra, Rita de Cássia Lazzarini

Downloads: 0
Views: 1156

Abstract

Epoxy resins (EP) usually cure in autoclave to minimize resin voids and to achieve the desired resin/fiber ratio. Cure parameters such as temperature, vacuum and pressure levels are controlled and monitored. Aiming time and cost optimization, new out-of-autoclave (OOA) cure processes have been developed lately. This study evaluated the cure cycle and the effect of non-programmed interruptions in an OOA process. Fourier Transform Infrared spectroscopy (FT-IR) results show similarities between the resin used and diglycidyl ether of bisphenol A (DGEBA) and also that the curing system is composed of cyan and sulfur hardeners, codified in industry, as Components of #2511 Resin System. The cure cycle and its interruptions were simulated by dynamic-mechanical analysis (DMA). The samples obtained were evaluated by FT-IR and differential scanning calorimetry (DSC), whose results show that the degree of cure varying between 0.8 to 0.85 was achieved at 120 °C.

Keywords

DMA, DSC, epoxy system, FT-IR, OOA.

References

1. Harshe, R. (2015). A review on advanced out-of-autoclave composites processing. Journal of the Indian Institute of Science, 95(3), 207-220. Retrieved in 2015, June 25, from http://journal.library.iisc.ernet.in/index.php/iisc/article/view/4567

2. Costa, M. L., Rezende, M. C., & Botelho, E. M. (2005). Estabelecimento de ciclo de cura de pré-impregnados aeronáuticos. Polímeros: Ciência e Tecnologia, 15(3), 224-231. http://dx.doi.org/10.1590/S0104-14282005000300014.

3. Grunenfelder, L. K., Centea, T., Hubert, P., & Nutt, S. R. (2013). Effect of room-temperature out-time on tow impregnation an out-of-autoclave prepreg. Composites. Part A, Applied Science and Manufacturing, 45, 119-126. http://dx.doi.org/10.1016/j.compositesa.2012.10.001.

4. CW Composites World. (2015). The market for OOA aerocomposites. Retrieved in 2015, June 25, from http://www.compositesworld.com/articles/the-market-for-ooa-aerocomposites-2013-2022

5. Thomas, A. C., John, J. G. Jr., Pavel, S., & Suresh, G. A. (2014). Void reduction during out-of-autoclave thermoset prepreg composite processing. In: Proceedings of the Conference Society for the Advancement of Material and Process Engineering. Seattle: SAMPE Noth America.

6. ETH Zuric. (2012). Composite materials and processing. Zürich: ETH Zuric. Retrieved in 2012, June 31, from http://www.structures.ethz.ch/research/composite-materials-and-processing.html

7. Fan-Long, J., Xiang, L., & Soo-Jin, P. (2015). Synthesis and application of epoxy resins: a review. Journal of Industrial and Engineering Chemistry, 29, 1-11. http://dx.doi.org/10.1016/j.jiec.2015.03.026.

8. Sugita, T., & Ito, M. (1965). Studies of thermosetting resin. the infrared analysis of cured epoxy resins. Bulletin of the Chemical Society of Japan, 38(10), 1620-1627. http://dx.doi.org/10.1246/bcsj.38.1620.

9. Dutra, R. C. L. (1997). Modificação de fibras de polipropileno com EVA funcionalizado (Doctoral thesis). Universidade Federal do Rio de Janeiro, Rio de Janeiro.

10. Romão, B. M. V., Dutra, R. C. L., Diniz, M. F., & Ribeiro, A. P. (2001). Aplicação de técnicas FTIR à caracterização de materiais utilizados na indústria aeroespacial. Pesquisa Naval, 14(14), 273-282.

11. Romão, B., Diniz, M. F., Azevedo, M. F. P., Lourenço, V. L., Pardini, L. C., Dutra, R. C. L., & Burel, F. (2003). Caracterização por FT-IR de agentes de cura utilizados em resinas epoxídicas-II-polimercaptana, poliaminoamida e amina modificada. Polímeros: Ciência e Tecnologia, 3(3), 173-180. http://dx.doi.org/10.1590/S0104-14282003000300007.

12. Romão, B. M. V., Diniz, M. F., Pardini, L. C., & Dutra, R. C. L. (2004). Aplicação de FT-MIR e FT-NIR ao estudo de reação de cura de sistemas epoxídicos. Polímeros: Ciência e Tecnologia, 14(3), 142-149. http://dx.doi.org/10.1590/S0104-14282004000300008.

13. Romão, B. M. V., Diniz, M. F., Azevedo, M. F. P., Lourenço, V. L., Pardini, L. C., Dutra, R. C. L., & Burel, F. (2006). Characterization of the curing agents used in epoxy resins with TG/FT-IR technique. Polímeros: Ciência e Tecnologia, 16(2), 94-98. http://dx.doi.org/10.1590/S0104-14282006000200007.

14. Andrade, H. P. C., Diniz, M. F., Azevedo, M. F. P., Cassu, S. N., Lourenço, V. L., Pardini, L. C., & Dutra, R. C. L. (2008). Comportamento de cura de adesivo epoxídico contendo grupo mercaptana avaliado por espectroscopia no infravermelho (MIR/NIR) e calorimetria exploratória diferencial (DSC). Polímeros: Ciência e Tecnologia, 18(4), 359-365. http://dx.doi.org/10.1590/S0104-14282008000400017.

15. Sales, R. C. M., Diniz, M. F., Dutra, R. C. L., Thim, G. P., & Dibbern-Brunelli, D. (2010). Thermal curing of glass-epoxy prepregs by luminescence spectroscopy. Journal of Applied Polymer Science, 117(1), 664-671. http://dx.doi.org/10.1002/app.31953.

16. Ferrari, V. C. G. M., Lourenço, V. L., Dutra, R. C. L., Diniz, M. F., Azevedo, M. F. P., & David, L. H. (2012). caracterização de um pré-impregnado aeronáutico por FT-IR e análise térmica. Polímeros: Ciência e Tecnologia, 22(4), 369-377. http://dx.doi.org/10.1590/S0104-14282012005000048.

17. Pardini, L. C., & Peres, R. J. C. (1996). Tecnologia de fabricação de pré-impregnados para compósitos estruturais utilizados na indústria aeronáutica. Polímeros: Ciência e Tecnologia, 6(2), 32-42. Retrieved in 2015, June 25, from http://www.revistapolimeros.org.br/PDF/v6n2/v6n2a02.pdf

18. Hexcel. (2017). Prepreg technology. Stamford: Hexcel. Retrieved in 2017, February 22 from https://www.ethz.ch/content/dam/ethz/special-interest/mavt/design-materials-fabrication/composite-materials-dam/Education/Manufacturing_of_Polymer_Composites/FS2017/Prepreg_Technology.pdf

19. Smith, A. L. (1979). Applied infrared spectroscopy: fundamentals, techniques, and analytical problem-solving. New York: John Wiley & Sons.

20. Graf, R. T., Koenig, J. L., & Ishida, H. (1987). Fourier transform infrared characterization of polymers. New York: Plenum Press.

21. Arrizabalaga, I., Gomez, L. O., Aramendia, J., Arana, G., & Madariaga, J. M. (2014). Determination of the pigments present in a wallpaper of the middle nineteenth century: The combination of mid-diffuse reflectance and far infrared spectroscopies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 308-314. http://dx.doi.org/10.1016/j.saa.2014.01.017.

22. Noureddine, A., Hequet, E., Turner, C., & Sari-Sarraf, H. (2005). FTIR analysis of crosslinked cotton fabric using a ZnSe–universal attenuated total reflectance. Journal of Applied Polymer Science, 96(2), 392-399. http://dx.doi.org/10.1002/app.21449.

23. Hawley, G. G. (1981). The condensed chemical dictionary (10th ed.). New York: Van Nostrand Reinhold Company.

24. Salzer, R., Junior, W., & Weyer, L. (2008). Practical guide to interpretive near-infrared spectroscopy. Angewandte Chemie International Edition, 47(25), 4628-4629. http://dx.doi.org/10.1002/anie.200885575.

25. Urbanski, J., Czerwinski, W., Janicka, K., Majewska, F., & Zowall, H. (1977). Uncured epoxy resin: handbook of analysis of sinthetic polymers and plastics. New York: John Wiley & Sons.

26. Hummel, D. O., & School, F. (1981). Spectra and methods of identification: atlas of polymer and plastics analysis (Vol. 3). Deerfield Beach: Dr. Hans F. Ebel.

27. Henry, L. H., & Neville, K. (1967). Handbook of epoxy resins. New York: McGraw-Hill.

5b7c215a0e8825db35896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections