Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Estudo da miscibilidade das misturas de PHB e PLA, com um PHB de alta polidispersividade

Miscibility study of PHB and PLA mixtures, using a PHB with high polydispersity

Pachekoski, Wagner M.; Dalmolin, Carla; Agnelli, José Augusto M.

Downloads: 0
Views: 575


Neste trabalho, foi estudada a miscibilidade de misturas de um PHB constituído de frações de alta e baixa massa molar com um PLA de alta massa molar. Os materiais extrudados foram analisados pelas técnicas de calorimetria exploratória diferencial (DSC), espectroscopia dielétrica (DE) e análises dinâmico-mecânicas (DMA). A partir dos resultados observou-se o distinto comportamento cristalino das frações de PHB, assim como a miscibilidade parcial do PLA com o PHB de baixa massa molar.


PHB, PLA, misturas poliméricas, polímero biodegradável.


In this work, the miscibility of a PHB formed by high and low molar mass fractions and a low molar mass PLA was studied. The extruded materials were analyzed by differential scanning calorimetry (DSC), dielectric spectroscopy (DS) and dynamic mechanical analysis (DMA). From these results, it was observed an unique behavior from the PHB fractions, and the partial miscibility of PLA onto low molar mass PHB.


PHB, PLA, blends, biodegradable polymer.


1. Howells, E. R. (1982). Opportunities in biotechnology for the chemical industry. Chemistry & Industry, 8, 508-511.

2. Platt, D. K. (2011). Biodegradable polymers: market report. New York: John-Wiley.

3. Kawaguchi, Y., & Doi, Y. (1992). Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules, 25(9), 2324-2329. http://dx.doi.org/10.1021/ma00035a007.

4. Chen, G. (2010). Plastics from bacteria: natural functions and applications. Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-03287-5.

5. Yokouchi, M., Chatani, Y., Tadokoro, H., Teranishi, K., & Tani, H. (1973). Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly (β-hydroxybutyrate). Polymer, 14(6), 267-272. http://dx.doi.org/10.1016/0032-3861(73)90087-6.

6. Skrbic, Z., & Divjakovic, V. (1996). Temperature influence on changes of parameters of the unit cell of biopolymer PHB. Polymer, 37(3), 505-507. http://dx.doi.org/10.1016/0032‑3861(96)82922-3.

7. Sato, H., Ando, Y., Mitomo, H., & Ozaki, Y. (2011). Infrared spectroscopy and X-ray diffraction studies of thermal behavior and lamella structures of Poly(3-hydroxybutyrate- co -3-hydroxyvalerate) (P(HB- co -HV)) with PHB-Type crystal structure and PHV-Type crystal structure. Macromolecules, 44(8), 2829-2837. http://dx.doi.org/10.1021/ma102723n.

8. Pratt, G. J., & Smith, M. J. A. (1997). Dielectric relaxation spectroscopy of a poly-β-hydroxybutyrate homopolymer. European Polymer Journal, 33(6), 857-861. http://dx.doi.org/10.1016/S0014-3057(96)00285-6.

9. Sics, I., Tupureina, V., Kalnins, M., Ezquerra, T. A., & Baltá-Calleja, F. J. (1998). Dielectric relaxation of poly-(β-hydroxybutyrate) relating to microstructure. Journal of Macromolecular Science, B37(6), 851-862. http://dx.doi.org/10.1080/00222349808212421.

10. Hanafy, T. A., Elbanna, K., El-Sayed, S., & Hassen, A. (2011). Dielectric relaxation analysis of biopolymer poly(3‑hydroxybutyrate). Journal of Applied Polymer Science, 121(6), 3306-3313. http://dx.doi.org/10.1002/app.33950.

11. Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2013). The influence of the industrial processing on the degradation of poly(hidroxybutyrate) - PHB. Materials Research, 16(2), 327. http://dx.doi.org/10.1590/S1516-14392012005000180.

12. Datta, R., Tsai, S., Bonsignore, P., Moon, S., & Frank, J. (1995). Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews, 16(2‑3), 221-231. http://dx.doi.org/10.1111/j.1574-6976.1995. tb00168.x.

13. Ren, J. (2011). Biodegradable poly(lactic acid): synthesis, modification, processing and application. New York: Springer. http://dx.doi.org/10.1007/978-3-642-17596-1.

14. AURAS, R. A., LIM, L., SELKE, S. E. M., & TJUDI, H. (2010). Poly(lactic acid): synthesis, structures, properties, processing, and applications. New York: John-Wiley. http://dx.doi.org/10.1002/9780470649848.

15. Seal, B. L., Otero, T. C., & Panitch, A. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering, 34(4-5), 147-230. http://dx.doi.org/10.1016/S0927-796X(01)00035-3.

16. Zhang, L., Xiong, C., & Deng, X. (1995). Biodegradable polyester blends for biomedical application. Journal of Applied Polymer Science, 56(1), 103-112. http://dx.doi.org/10.1002/app.1995.070560114.

17. Domb, A. J., & Kumar, N. (2011). Biodegradable polymers in clinical use and clinical development. New York: John-Wiley. http://dx.doi.org/10.1002/9781118015810.

18. Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9(2), 63-84.

19. Henton, D. E., Gruber, P. G., Lunt, J., & Randall, J. (2005). Polylactic acid technology. In A. K. Mohanty, & L. Dzral (Eds.), Natural fibers, biopolymers, and biocomposites (pp. 527-578). New York: CRC Press. http://dx.doi.org/10.1201/9780203508206.ch16.

20. Zhang, L., Xiong, C., & Deng, X. (1996). Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends. Polymer, 37(2), 235-241. http://dx.doi.org/10.1016/0032-3861(96)81093-7.

21. Koyama, N., & Doi, Y. (1995). Morphology and biodegradability of a binary blend of poly((R)-3-hydroxybutyric acid) and poly((R,S)-lactic acid). Canadian Journal of Microbiology, 41(13), 316-322. http://dx.doi.org/10.1139/m95-203.PMid:7606667

22. Blümm, E., & Owen, E. J. (1995). Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends. Polymer, 36(21), 4077-4081. http://dx.doi.org/10.1016/0032-3861(95)90987-D.

23. Ohkoshi, I., Abe, H., & Doi, Y. (2000). Miscibility and solid‑state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer, 41(15), 5985-5992. http://dx.doi.org/10.1016/S0032-3861(99)00781-8.

24. Gerard, T., & Budtova, T. (2012). Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. European Polymer Journal, 48(6), 1110-1117. http://dx.doi.org/10.1016/j.eurpolymj.2012.03.015.

25. Ficha Técnica de caracterização poli (hidroxibutirato) lote 60-3. (2015, Fevereiro 3). Recuperado em http://www.biocycle.com.br/site.htm.

26. Poly latic acid Lacea H-100J Datasheet. (2015, Fevereiro 3).Recuperado em http://plastics.ulprospector.com/pt/datasheet/e52212/lacea-h-100j-stretched.

27. Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.036.

28. Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. http://dx.doi.org/10.1002/adv.20235.

29. Chang, L., & Woo, E. M. (2011). Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid). Polymer, 52(1), 68-76. http://dx.doi.org/10.1016/j.polymer.2010.11.028.
588371ba7f8c9d0a0c8b4a32 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections