Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1529
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Polyphenolic resin synthesis: optimizing plantain peel biomass as heavy metal adsorbent

Cordero, Andrés Felipe; Gómez, Milton; Castillo, José Humberto

Downloads: 0
Views: 1001

Abstract

Polyphenolic resol resins were obtained from an ethanolic extraction of green plantain peels (Musa paradisiaca) grown in Colombia. A synthesis was then performed by polycondensation in an alkaline pH solution in order to perform research on phenolic resin production with high mechanical performance. The polymers were characterized by DSC and TGA analyses and the resins showed a melting point of 94 °C and the typical properties of resol resins. Moreover, the synthesis was controlled using the infrared technique (FTIR) where different organic functional groups present in the polymers obtained are observed. The obtained resins were used as heavy metal adsorbents in which the content of those toxic agents is measured by Atomic Absorption Analysis (AA) indicating that these resins have a high retention affinity to Pb+2, Ni+2 and Cr+3 (79.01%, 98.48%, 94.14%, respectively) as determined by Freundlich isotherms.

Keywords

resol resins, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, freundlich isotherms, toxic heavy metal adsorbents.

References

1. Bailey, S. E., Olin, T. J., Bricka, R., & Adrian, D. (1999). A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Research, 33(11), 2469-2479. http://dx.doi.org/10.1016/S0043-1354(98)00475-8.

2. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresource Technology, 99(14), 6017-6027. http://dx.doi.org/10.1016/j.biortech.2007.11.064. PMid:18280151.

3. Alonso, M., Oliet, M., Pérez, J., Rodríguez, F., & Echeverría, J. (2004). Determination of curing kinetic parameters of lignin-phenolformaldehyde resol resins by several dynamic diferential scanning calorimetry methods. Thermochimica Acta, 419(1-2), 161-167. http://dx.doi.org/10.1016/j.tca.2004.02.004.

4. Tejado, A., Peña, C., Labidi, J., Echeverria, J. M., & Mondragon, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology, 98(8), 1655-1663. http://dx.doi.org/10.1016/j.biortech.2006.05.042. PMid:16843657.

5. Domínguez, J., Alonso, M., Oliet, M., Rojo, E., & Rodríguez, F. (2010). Chemorheological study of the curing kinetics of a phenolic resol resin gelled. European Polymer Journal, 46(6), 1237-1243.

6. Wang, M., Leitch, M., & Charles, C. (2009). Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. European Polymer Journal, 45(12), 3380-3388. http://dx.doi.org/10.1016/j.eurpolymj.2009.10.003.

7. Chen, Y., Chen, Z., Xiao, S., & Liu, H. (2008). A novel thermal degradation mechanism of phenol–formaldehyde type resins. Thermochimica Acta, 476(1-2), 39-43. http://dx.doi.org/10.1016/j.tca.2008.04.013.

8. Pérez, J., & Fernández, A. (2011). Thermal stability and pyrolysis kinetics of lignin-phenol-formaldehyde resins. Journal of Applied Polymer Science, 123(5), 3036-3045. http://dx.doi.org/10.1002/app.34817.

9. Zhao, Y., Yan, N., & Feng, M. (2013). Thermal degradation characteristics of phenol–formaldehyde resins derived from beetle infested pine barks. Thermochimica Acta, 555, 46-52. http://dx.doi.org/10.1016/j.tca.2012.12.002.

10. Silva, E. L., & Roldan, P. S. (2009). Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry. Journal of Hazardous Materials, 161(1), 142-147. http://dx.doi.org/10.1016/j.jhazmat.2008.03.100. PMid:18456398.

11. Coles, C., & Yong, N. (2005). Use of equilibrium and initial metal concentrations in determining freundlich isotherms for soils and sediments. Engineering Geology, 85(1-2), 19-25. http://dx.doi.org/10.1016/j.enggeo.2005.09.023.

12. Mohan, D., & Pittman, C. U., Jr (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762-811. http://dx.doi.org/10.1016/j.jhazmat.2006.06.060. PMid:16904258.

13. Chubar, N., Carvalho, J., & Correia, M. (2004). Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 238(1-3), 51-58. http://dx.doi.org/10.1016/j.colsurfa.2004.01.039.

14. Kadirvelu, K., Thamaraiselvi, K., & Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76(1), 63-65.. http://dx.doi.org/10.1016/S0960-8524(00)00072-9. PMid:11315812.

15. Zhao, Y., Yan, N., & Feng, M.(2013). Biobased phenol formaldehyde resins derived from beetle-infested pine barks: structure and composition. ACS Sustenable Chemistry and Engineering, 1(1), 91-101.

16. Pelissari, F., Andrade-Mahecha, M., Do Amaral Sobral, P., & Menegalli, F. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681-690. http://dx.doi.org/10.1016/j.foodhyd.2012.08.007.

17. Huang, C. B., Jeng, R., Sain, M., Saville, B. A., & Hubbes, M. (2006). Production, characterization, and mechanical properties of starch modified by Ophiostoma spp. BioResources, 1(2), 257-269.

18. Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918. http://dx.doi.org/10.1021/jf011652p. PMid:12083858.

19. Krishnan, R., & Maru, G. (2006). Isolation and analyses of polymeric polyphenol fractions from black tea. Food Chemistry, 94(3), 331-340. http://dx.doi.org/10.1016/j.foodchem.2004.11.039.

20. Poljanšek, I., & Krajnc, M. (2005). Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica, 52(3), 238-244.
588371c47f8c9d0a0c8b4a5a polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections