Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.11217
Polímeros: Ciência e Tecnologia
Original Article

Non-isothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-co-terephthalate) and its mixture

Costa, Anna Raffaela Matos; Ito, Edson Noryuki; Cavalho, Laura Hecker; Canedo, Eduardo Luís

Downloads: 0
Views: 23

Abstract

Nonisothermal crystallization and melting of the biodegradable thermoplastics poly(3-hydroxybutyrate) (PHB), poly(butylene adipate-co-terephthalate) (PBAT), and a 1:1 PHB/PBAT blend were investigated by differential scanning calorimetry (DSC) over an extensive range of heating/cooling rates (2 to 64°C/min). The different phase transition behavior of the neat components was reflected in the mixture and suggest an immiscible blend. Pseudo-Avrami, Ozawa and Mo classical macrokinetic models were used to describe the evolution of the melt crystallization process. Results suggest that none of these models could be used to predict the experimental results of crystallization kinetics of the blend with sufficient precision for polymer processing applications. However, some methods may be of used for the neat resins over restricted ranges of cooling rate, temperature or conversion (e.g., Ozawa for PHB at low cooling rate, Mo for PBAT).

Keywords

PHB; PBAT; blends; crystallization kinetics

References

1 Xiaohui, W., Jun, S., Ying, C., Zhifeng, F., & Yan, S. (2012). Nonisothermal crystallization kinetics of poly(butylene adipate-co-terephthalate) copolyester. China Petroleum Processing and Petrochemical Technology14(1), 74-79. 

2 Fukushima, K., Wu, M. H., Bocchini, S., Rasyida, A., & Yang, M. C. (2012). PBAT based nanocomposites for medical and industrial applications. Materials Science and Engineering C , 32(6), 1331-1351. http://dx.doi.org/10.1016/j.msec.2012.04.005. PMid:24364930.

3 Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation & Stability97(10), 1898-1914. http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.028. 

4 Barham, P. J., Keller, A., Otun, E. L., & Holmes, P. A. (1984). Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science , 19(9), 2781-2789. http://dx.doi.org/10.1007/BF01026954.

5 Yamamoto, M., Witt, U., Skupin, G., Beimborn, D., & Müller, R. J. (2002). Biodegradable aliphatic-aromatic polyesters: Ecoflex®. In Y. Doi, & A. Steinbüchel (Eds.), Biopolymers, polyesters III – applications and commercial products (pp. 299-305). Weinheim: Wiley-VCH Verlag GmbH. 

6 Costa, A. R. M., Almeida, T. G., Silva, S. M. L., Carvalho, L. H., & Canedo, E. L. (2015). Chain extension in poly(butylene-adipate-terephthalate). Inline testing in a laboratory internal mixer. Polymer Testing42, 115-121. http://dx.doi.org/10.1016/j.polymertesting.2015.01.007. 

7 Witt, U., Einig, T., Yamamoto, M., Kleeberg, I., Deckwer, W. D., & Müller, R. J. (2001). Biodegradation of aliphatic-aromatic copolyesteres: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere , 44(2), 289-299. http://dx.doi.org/10.1016/S0045-6535(00)00162-4. PMid:11444312.

8 Avérous, L., & Fringant, C. (2001). Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems. Polymer Engineering and Science41(5), 727-734. http://dx.doi.org/10.1002/pen.10768. 

9 Gan, Z. H., Kuwabara, K., Yamamoto, M., Abe, H., & Doi, Y. (2004). Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters. Polymer Degradation & Stability83(2), 289-300. http://dx.doi.org/10.1016/S0141-3910(03)00274-X. 

10 Chen, C., Fei, B., Peng, S., Zhuang, Y., Dong, L., & Feng, Z. (2002). Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) and maleated poly(3-hydroxybutyrate). European Polymer Journal38(80), 1663-1670. http://dx.doi.org/10.1016/S0014-3057(02)00046-0. 

11 An, Y., Dong, L., Mo, Z., Liu, T., & Feng, Z. (1998). Nonisothermal crystallization kinetics of poly(β-hydoxybutyrate). Journal of Polymer Science. Part B, Polymer Physics36(8), 1305-1312. http://dx.doi.org/10.1002/(SICI)1099-0488(199806)36:8<1305::AID-POLB5>3.0.CO;2-Q. 

12 Schultz, J. M. (2001). Polymer crystallization – the development of crystalline order in thermoplastic polymers. New York: Oxford University Press. 

13 Avella, M., Martuscelli, E., Orsello, G., Raimo, M., & Pascucci, B. (1997). Poly(3- hydroxybutyrate)/poly(methyleneoxide) blends: thermal, crystallization and mechanical behaviour. Polymer , 38(25), 6135-6143. http://dx.doi.org/10.1016/S0032-3861(97)00166-3. 

14 Liu, T., Mo, Z., & Zhang, H. (1998). Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. Journal of Applied Polymer Science , 67(5), 815-821. http://dx.doi.org/10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.0.CO;2-W. 

15 Vidhate, S., & D’Souza, N. A. (2011). Biodegradable poly(hydroxy butyrate-covalerate) nanocomposites and blends with poly(butylene adipate-co-terephthalate) for sensor applications, miscibility, compatibility of PBHV/PBAT blends, (Doctoral thesis). University of North Texas, Texas. 

16 Bittmann, B., Bouza, R., Barral, L., Castro-Lopez, M., & Dopico-Garcia, S. (2015). Morphology and thermal behavior of poly (3-hydroxybutyrate-co-3- hydroxyvalerate)/poly(butylene adipate-co-terephthalate)/clay nanocomposites. Polymer Composites , 36(11), 2051-2058. http://dx.doi.org/10.1002/pc.23115. 

5db0440d0e88256f6e61d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections