Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synergistic improvement of mechanical and magnetic properties of a new magnetorheological elastomer composites based on natural rubber and powdered waste natural rubber glove

Nabil Hayeemasae; Hanafi Ismail

Downloads: 0
Views: 31


Recycling of rubber waste and finding the effective methods to extend its use are one of major challenges nowadays. In the present study, waste natural rubber glove (wNRg) was used in an attempt to extend its use and create a value-added composite based on natural rubber (NR) and wNRg. Another interesting focus was to develop such material into a new Magnetorheological Elastomer (MRE). This MRE can be prepared by incorporating Ferromagnetic particles namely carbonyl iron (CI) to the rubber composite. Carbon black (CB) was also added to obtain MRE with remarkably mechanical properties. CI was fixed at 60 phr where the CB was varied from 10 – 30 phr. Higher thermal conductivity and magneticity in nature of CI had made the composites faster cure and higher magnetic strength. On the contrary, superior tensile strength, modulus and elongation at break were found in the presence of CB. From the experimental results, hybridization of 60/10 phr/phr of CI and CB is highly suggested to gain the synergistic strength and magneticity. This is expected to solve a big problem in the application of MRE.



natural rubber, carbonyl iron, carbon black, magnetic properties


1 Aoyama, T. (2004). Development of gel structured electrorheological fluids and their application for the precision clamping mechanism of aerostatic sliders. CIRP Annals-Manufacturing Technology, 53(1), 325-328. http://dx.doi.org/10.1016/S0007-8506(07)60708-2.

2 Pössinger, T., Bolzmacher, C., Bodelot, L., & Triantafyllidis, N. (2014). Influence of interfacial adhesion on the mechanical response of magneto-rheological elastomers at high strain. Microsystem Technologies, 20(4-5), 803-814. http://dx.doi.org/10.1007/s00542-013-2036-0.

3 Japka, J. E. (1988). Microstructure and properties of carbonyl iron powder. Journal of the Minerals Metals & Materials Society, 40(8), 18-21. http://dx.doi.org/10.1007/BF03258115.

4 Boczkowska, A., Awietjan, S. F., Pietrzko, S. A., & Kurzydłowski, K. J. (2012). Mechanical properties of magnetorheological elastomers under shear deformation. Composites. Part B, Engineering, 43(2), 636-640. http://dx.doi.org/10.1016/j.compositesb.2011.08.026.

5 Chokkalingam, R., Pandi, R. S., & Mahendran, M. (2010). Magnetomechanical behavior of Fe/PU magnetorheological elastomers. Journal of Composite Materials, 45(15), 1545-1552. http://dx.doi.org/10.1177/0021998310383733.

6 Sun, Y., Zhou, X., Liu, Y., Zhao, G., & Jiang, Y. (2009). Effect of magnetic nanoparticles on the properties of magnetic rubber. Materials Research Bulletin, 45(17), 878-881. http://dx.doi.org/10.1016/j.materresbull.2010.01.017.

7 Makled, M. H., Matsui, T., Tsuda, H., Mabuchi, H., El-Mansy, M. K., & Morii, K. (2005). Magnetic and dynamic mechanical properties of barium ferrite natural rubber composites. Journal of Materials Processing Technology, 160(2), 229-233. http://dx.doi.org/10.1016/j.jmatprotec.2004.06.013.

8 Dobrzanski, L. A., Tomiczek, A., Tomiczek, B., Slawska, A., & Iesenchuk, O. (2009). Polymer matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles. Journal of Achievements in Materials and Manufacturing Engineering, 37(1), 16-23.

9 Lokander, M., & Stenberg, B. (2003). Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polymer Testing, 22(6), 677-680. http://dx.doi.org/10.1016/S0142-9418(02)00175-7.

10 Małecki, P., Królewicz, M., Krzak, J., Kaleta, J., & Pigłowski, J. (2015). Dynamic mechanical analysis of magnetorheological composites containing silica-coated carbonyl iron powder. Journal of Intelligent Material Systems and Structures, 26(14), 1899-1905. http://dx.doi.org/10.1177/1045389X15581522.

11 Shuib, R. K., Pickering, K. L., & Mace, B. R. (2015). Dynamic properties of magnetorheological elastomers based on iron sand and natural rubber. Journal of Applied Polymer Science, 132(8), 41506. http://dx.doi.org/10.1002/app.41506.

12 Soloman, M., Kurian, P., Anantharaman, M., & Joy, P. (2005). Cure characteristics and dielectric properties of magnetic composites containing strontium ferrite. Journal of Elastomers and Plastics, 37(2), 109-121. http://dx.doi.org/10.1177/0095244305046488.

13 Nabil, H., & Ismail, H. (2014). Fatigue life, thermal analysis and morphology of Recycled Poly(Ethylene Terephthalate)/commercial fillers hybrid filled natural rubber composites. Progress in Rubber, Plastics and Recycling Technology, 30(2), 115-128. http://dx.doi.org/10.1177/147776061403000204.

14 Sumita, M., Sakata, K., Asai, S., Miyasaka, K., & Nakagawa, H. (1991). Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polymer Bulletin, 25(2), 265-271. http://dx.doi.org/10.1007/BF00310802.

15 Chen, L., Gong, X. L., & Li, W. H. (2008). Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polymer Testing, 27(3), 340-345. http://dx.doi.org/10.1016/j.polymertesting.2007.12.003.

16 Guyomar, D., Matei, D. F., Guiffard, B., Le, Q., & Belouadah, R. (2009). Magnetoelectricity in polyurethane films loaded with different magnetic particles. Materials Letters, 63(6-7), 611-613. http://dx.doi.org/10.1016/j.matlet.2008.11.058.

17 Sun, T. L., Gong, X. L., Jiang, W. Q., Li, J. F., Xu, Z. B., & Li, W. H. (2008). Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polymer Testing, 27(4), 520-526. http://dx.doi.org/10.1016/j.polymertesting.2008.02.008.

18 Wang, Y., Hu, Y., Deng, H., Gong, P. G., Jiang, W., & Chen, Z. (2006). Magnetorheological elastomers based on isobutylene–isoprene rubber. Polymer Engineering and Science, 46(3), 264-268. http://dx.doi.org/10.1002/pen.20462.

19 Hayeemasae, N., & Ismail, H. (2019). Curing and swelling kinetics of new magnetorheological elastomer based on natural rubber/waste natural rubber gloves composites. Journal of Elastomers and Plastics, 51(7-8), 583-602. http://dx.doi.org/10.1177/0095244318803987.

20 Flory, P. J., & Rehner, J. Jr (1943). Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. The Journal of Chemical Physics, 11(11), 512-520. http://dx.doi.org/10.1063/1.1723791.

21 Medalia, A. I. (1978). Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chemistry and Technology, 51(3), 437-523. http://dx.doi.org/10.5254/1.3535748.

22 Qing, Y., Min, D., Zhou, Y., Luo, F., & Zhou, W. (2015). Graphene nanosheet-and flake carbonyl iron particle-filled epoxy-silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon, 86(1), 98-107. http://dx.doi.org/10.1016/j.carbon.2015.01.002.

23 Hamilton, R., & Crosser, O. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191. https://doi.org/10.1021/i160003a005

24 Gehman, S. (1967). Heat transfer in processing and use of rubber. Rubber Chemistry and Technology, 40(1), 36-99. http://dx.doi.org/10.5254/1.3539047.

25 Ismail, H., Rosnah, N., & Rozman, H. (1997). Curing characteristics and mechanical properties of short oil palm fibre reinforced rubber composites. Polymer, 38(16), 4059-4064. http://dx.doi.org/10.1016/S0032-3861(96)00993-7.

26 Wolff, S., & Wang, M. J. (1992). Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement. Rubber Chemistry and Technology, 65(2), 329-342. http://dx.doi.org/10.5254/1.3538615.

27 Bigg, D. M. (1987). Mechanical properties of particulate filled polymers. Polymer Composites, 8(2), 115-122. http://dx.doi.org/10.1002/pc.750080208.

28 Baccaro, S., Cataldo, F., Cecilia, A., Cemmi, A., Padella, F., & Santini, A. (2003). Interaction between reinforce carbon black and polymeric matrix for industrial applications. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 208, 191-194. http://dx.doi.org/10.1016/S0168-583X(03)00638-4.

29 Khimi, S. R., & Pickering, K. L. (2015). Comparison of dynamic properties of magnetorheological elastomers with existing antivibration rubbers. Composites. Part B, Engineering, 83(1), 175-183. http://dx.doi.org/10.1016/j.compositesb.2015.08.033.

30 Jovanović, V., Samaržija-Jovanović, S., Budinski-Simendić, J., Marković, G., & Marinović-Cincović, M. (2013). Composites based on carbon black reinforced NBR/EPDM rubber blends. Composites. Part B, Engineering, 45(1), 333-340. http://dx.doi.org/10.1016/j.compositesb.2012.05.020.

5f6decbe0e8825480997b914 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections