Evaluation of the mechanical and thermal properties of PHB/canola oil films
Giaquinto, Cláudia Daniela Melo; Souza, Grasielly Karine Martins de; Caetano, Viviane Fonseca
Abstract
Packages are essential for the food processing industry. Among the innovative alternatives there is antimicrobial packaging, which aims to reduce or inhibit microbial growing on the food surface. One potential to produce this type of package is poly(3-hydroxybutyrate)-PHB additivated with canola oil. In this work, films of PHB additivated with canola oil were produced in different compositions. Mid-infrared records, tensile mechanical testing and thermal analyses were performed on the films. The results of the mechanical tests indicated that the addition of canola oil to the polymeric matrix of PHB increases the material flexibility. The thermal analyses results showed that the addition of canola oil changes the thermal properties of PHB, such as the melting and crystallization temperatures, maximum crystallization rate and relative crystallinity. The knowledge of these properties is fundamental for the manufacturing process of polymeric materials, due to the specifications required for these materials in the intended applications.
Keywords
References
1. Wani, A. A., Singh, P., & Langowski, H. C. (2014). Packaging. In Y. Motarjemi & L. Gorris (Eds.), Encyclopedia of food safety (pp. 211-218). UK: Elsevier Science.
2. Muppalla, S. R., Kanatt, S. R., Chawla, S. P., & Sharma, A. (2014). Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging and Shelf Life, 2(2), 51-58. http://dx.doi.org/10.1016/j.fpsl.2014.07.002.
3. Azeredo, H. M. C., Faria, J. A. F., & Azeredo, A. M. C. (2000). EmbalagensAtivas Para Alimentos. Food Science and Technology, 20(3), 337-341. http://dx.doi.org/10.1590/S0101-20612000000300010.
4. Gouvêa, D. M., Mendonça, R. C. S., Soto, M. L., & Cruz, R. S. (2015). Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. LebensmittelWissenschaft + Technologie, 63(1), 85-91. http://dx.doi. org/10.1016/j.lwt.2015.03.014.
5. Wrona, M., Bentayeb, K., & Nerín, C. (2015). A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricusbisporus). Food Control, 54, 200-207. http://dx.doi.org/10.1016/j.foodcont.2015.02.008.
6. Pérez-Pérez, C., Regalado-González, C., Rodríguez-Rodríguez, C. A., Barbosa-Rodríguez, J. R., & Villaseñor-Ortega, F. (2006). Incorporation of antimicrobial agents in food packaging films and coatings. In R. G. Guevara-González & I. Torres-Pacheco (Eds.), Advances in Agricultural and Food Biotechnology (pp.193-216). Índia: Research Signpost.
7. Iahnke, A. O. S., Costa, T. M. H., Rios, A. O., & Flôres, S. H. (2015). Residues of minimally processed carrot and gelatin capsules:Potential materials for packaging films. Industrial Crops and Products, 76, 1071-1078. http://dx.doi.org/10.1016/j.indcrop.2015.08.025.
8. Rosa, D. S., Lotto, N. T., Lopes, D. R., & Guedes, C. G. F. (2004). The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrateco-β-valerate). Polymer Testing, 23(1), 3-8. http://dx.doi. org/10.1016/S0142-9418(03)00042-4.
9. Mozumder, M. S. I., Garcia-Gonzalez, L., De Wever, H., & Volcke, E. I. P. (2015). Effect of sodium accumulation on heterotrophic growth and polyhydroxybutyrate (PHB) production by Cupriavidusnecator. Bioresource Technology, 191, 213-218. PMid:25997010. http://dx.doi.org/10.1016/j.biortech.2015.04.110.
10. Rocha, M. C. G. & Moraes, L. R. C. (2015). Low Density Polyethylene (LDPE) blends based on Poly(3-HydroxiButyrate) (PHB) and Guar Gum (GG) biodegradable polymers. Polímeros: Ciência e Tecnologia, 25(1), 42-48. http://dx.doi.org/10.1590/0104-1428.1495.
11. Kulpreecha, S., Boonruangthavorn, A., Meksiriporn, B., & Thongchul, N. (2009). Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. Journal of Bioscience and Bioengineering, 107(3), 240-245. PMid:19269585. http://dx.doi.org/10.1016/j.jbiosc.2008.10.006.
12. Mousavioun, P., Halley, P. J., & Doherty, W. O. S. (2013). Thermophysical properties and rheology of PHB/lignin blends. Industrial Crops and Products, 50, 270-275. http://dx.doi.org/10.1016/j.indcrop.2013.07.026.
13. Barkoula, N. M., Garkhail, S. K., & Peijs, T. (2010). Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Industrial Crops and Products, 31(1), 34-42. http://dx.doi.org/10.1016/j.indcrop.2009.08.005.
14. Abdullah, B. M., & Salimon, J. (2010). Epoxidation of vegetable oils and fatty acids: catalysts, methods and advantages. Journal of Applied Sciences, 10(15), 1545-1553. http://dx.doi.org/10.3923/jas.2010.1545.1553.
15. Wu, J., & Muir, A. D. (2008). Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. Journal of Food Science, 73(3), C210-C216. PMid:18387101. http://dx.doi.org/10.1111/j.1750-3841.2008.00675.x.
16. Food Ingredients Brasil. (2012). Canola. Food Ingredients Brasil, São Paulo, (21), 29-34.
17. Zheng, C. J., Yoo, J.-S., Lee, T.-G., Cho, H.-Y., Kim, Y.-H., & Kim, W.-G. (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23), 5157-5162. PMid:16146629. http://dx.doi. org/10.1016/j.febslet.2005.08.028.
18. Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379-1388. PMid:23666640. http://dx.doi.org/10.1007/s12010-013-0267-2.
19. Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. http://dx.doi.org/10.1016/j.eurpolymj.2013.11.009.
20. Nagy, E., Justesen, U. S., Eitel, Z., & Urbán, E. (2015). Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroidesfragilis group isolates. Anaerobe, 31, 65-71. PMid:25464140. http://dx.doi.org/10.1016/j.anaerobe.2014.10.008.
21. American Society for Testing and Materials – ASTM. ASTM D882-12: Standard Test Method for Tensile Properties of Thin Plastic Sheeting. West Conshohocken: ASTM.
22. Canedo, E. L. (2014). Programa Integral© - Versão 3B, 08-08-2014. Campina Grande: Universidade Federal de Campina Grande:
23. Barham, P. J., Keller, A., Otun, E. L., & Holmes, P. A. (1984). Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science, 19(9), 2781-2794. http://dx.doi.org/10.1007/BF01026954.
24. Heitmann, A. P., Patrício, P. S. O., Coura, I. R., Pedroso, E. F., Souza, P. P., Mansur, H. S., Mansur, A., & Oliveira, L. C. A. (2016). Nanostructured niobium oxyhydroxide dispersed Poly(3-hydroxybutyrate) (PHB) films: Highly efficient photocatalystsfordegradation methylene blue dye. Applied Catalysis B: Environmental, 189, 141-150. http://dx.doi.org/10.1016/j.apcatb.2016.02.031.
25. Waterhouse, G. I. N., Wang, W., & Sun-Waterhouse, D. (2014). Stability of canola oil encapsulated by co-extrusion technology: Effect of quercetin addition to alginate shell or oil core. Food Chemistry, 142, 27-38. PMid:24001809. http://dx.doi.org/10.1016/j.foodchem.2013.07.035.
26. Reid, M. K., & Spencer, K. L. (2009). Use of principal components analysis (PCA) on estuarine sediment datasets: The effect of data pre-treatment. Environmental Pollution, 157(8–9), 2275-2281. PMid:19410344. http://dx.doi.org/10.1016/j.envpol.2009.03.033.
27. Huang, Z.-H., Li, W.-J., Wang, J., & Zhang, T. (2015). Face recognition based on pixel-level and feature-level fusion of the top-level’s wavelet sub-bands. Information Fusion, 22, 95-104. http://dx.doi.org/10.1016/j.inffus.2014.06.001.
28. Borràs, E., Amigo, J. M., van den Berg, F., Boqué, R., & Busto, O. (2014). Fast and robust discrimination of almonds (Prunusamygdalus) with respect to their bitterness by using near infrared and partial least squares-discriminant analysis. Food Chemistry, 153, 15-19. PMid:24491694. http://dx.doi.org/10.1016/j.foodchem.2013.12.032.
29. Lyra, W. S., Silva, E. C., Araújo, M. C. U., Fragoso, W. D., & Veras, G. (2010). Classificação periódica: um exemplo didático para ensinar análise de componentes principais. Quimica Nova, 33(7), 1594-1597. http://dx.doi.org/10.1590/S0100-40422010000700030.
30. De Sena, M. M., Poppi, R. J., Frighetto, R. T. S., & Valarini, P. J. (2000). Avaliação do uso de métodosquimiométricosemanálise de solos. Quimica Nova, 23(4), 547-556. http://dx.doi.org/10.1590/S0100-40422000000400019.
31. Souza, A. M., & Poppi, R. J. (2012). Experimento didático de quimiometria para análise exploratória de óleos vegetais comestíveis por espectroscopia no infravermelho médio e análise de componentes principais: um tutorial, parte I. Quimica Nova, 35(1), 223-229. http://dx.doi.org/10.1590/S0100-40422012000100039.
32. Ferreira, L. A. S., Pessan, L. A., & Hage, E., Jr. (1997). Comportamento mecânico e termo-mecânico de blendas poliméricas PBT/ABS. Polímeros: Ciência e Tecnologia, 7(1), 67-72. http://dx.doi.org/10.1590/S0104-14281997000100011.
33. Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadinia, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. Lebensmittel-Wissenschaft + Technologie, 54(2), 346-352. http://dx.doi.org/10.1016/j.lwt.2013.06.017.
34. Altiok, D., Altiok, E., & Tihminlioglu, F. (2010). Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Materials Science, 21(7), 2227-2236. http://dx.doi.org/10.1007/s10856-010-4065-x. PMid:20372985.
35. Hauser, C., Peñaloza, A., Guarda, A., Galotto, M. J., Bruna, J. E., & Rodríguez, F. J. (2016). Development of an active packaging film based on a methylcellulose coating containing murta (UgnimolinaeTurcz) leaf extract. Food and Bioprocess Technology, 9(2), 298-307. http://dx.doi.org/10.1007/s11947-015-1623-8.
36. Pinto, U. F., & Monteiro, E. E. C. (2005). Efeito da massa molar e do teor de poliuretano nas propriedades mecânicas de misturas poli(metacrilato de metila)/poliuretano. Polímeros: Ciência e Tecnologia, 15(3), 156-162. http://dx.doi.org/10.1590/S0104-14282005000300004.
37. Noronha, C. M., Carvalho, S. M., Lino, R. C., & Barreto, P. L. (2014). Characterization of antioxidant methylcellulose film incorporated with α-tocopherolnanocapsules. Food Chemistry, 159, 529-535. PMid:24767092. http://dx.doi.org/10.1016/j. foodchem.2014.02.159.
38. Gonzalez, A., Irusta, L., Fernández-Berridi, M. J., Iriarte, M., & Iruin, J. J. (2005). Application of pyrolysis/gas chromaography/Fourier transform infrared spectroscopy and TGA techniques in the study of thermal degradation of poly(3-hydroxybutyrate). Polymer Degradation & Stability, 87(2), 347-354. http://dx.doi.org/10.1016/j.polymdegradstab.2004.09.005.
39. Paul, E. L., Campos, T. F., & Mano, V. (2014). Glicólise do poli(3-hidroxibutirato) por via enzimática. Quimica Nova, 37(3), 487-491. http://dx.doi.org/10.5935/0100-4042.20140080.