Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Mechanical and water absorption properties and morphology of melt processed Zein/PVAl blends

Sandro Junior Vessoni Torres; Gabriela Brunosi Medeiros; Francisco Rosário; Fabio Yamashita; Luiz Henrique Capparelli Mattoso; Elisângela Corradini

Downloads: 0
Views: 25


Blends of zein and poly(vinyl alcohol) (PVAl) were processed in an internal mixer (150ºC, 50 rpm) for 5-8 minutes. Glycerol and oleic acid were used as plasticizers. The mixtures obtained were then compression molded and further characterized by Fourier transform infrared spectroscopy (FTIR), water-absorption experiments, mechanical tests, and scanning electron microscopy (SEM). FTIR analysis indicated the existence of hydrogen bonding interactions between zein and PVAl. Tensile tests showed that the addition of PVAl increased the flexibility of the blends. The tensile strength ranged from 1.7 to 5.7 MPa, elongation at break ranged from 2.7 to 32% and Young’s modulus ranged from 433 to 7371 MPa. Water absorption at equilibrium decreased with increasing zein content, which favored a brittle behavior in the zein/PVAl. The blends were immiscible in the composition studied and the presence of voids indicated poor interfacial interaction between the polymers.



melt processing, oleic acid, glycerol, poly(vinyl alcohol) and zein


1 Zhang, H., & Mittal, G. (2010). Biodegradable protein-based films from plant resources: a review. Environmental Progress & Sustainable Energy, 29(2), 203-220. http://dx.doi.org/10.1002/ep.10463.

2 Geraghty, D., Peifer, M. A., Rubenstein, I., & Messing, J. (1981). The primary structure of a plant storage protein: zein. Nucleic Acids Research, 9(19), 5163-5174. http://dx.doi.org/10.1093/nar/9.19.5163.

3 Cabra, V., Arreguin, R., Galvez, A., Quirasco, M., Vazquez-Duhalt, R., & Farres, A. (2005). Characterization of a 19 kDa alpha-zein of high purity. Journal of Agricultural and Food Chemistry, 53(3), 725-729. http://dx.doi.org/10.1021/jf048530s.

4 Corradini, E., Curti, P. S., Meniqueti, A., Martins, A. F., Rubira, A. F., & Muniz, E. C. (2014). Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. International Journal of Molecular Sciences, 15(12), 22438-22470. http://dx.doi.org/10.3390/ijms151222438.

5 Luo, Y., & Wang, Q. (2014). Zein-based micro- and nano-particles for drug and nutrient delivery: A review. Journal of Applied Polymer Science, 131(16), 40696. http://dx.doi.org/10.1002/app.40696.

6 Chen, Y., Ye, R., & Liu, J. (2014). Effects of different concentrations of ethanol and isopropanol on physicochemical properties of zein-based films. Industrial Crops and Products, 53, 140-147. http://dx.doi.org/10.1016/j.indcrop.2013.12.034.

7 Shi, W., & Dumont, M. J. (2014). Review: bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. Journal of Materials Science, 49(5), 1915-1930. http://dx.doi.org/10.1007/s10853-013-7933-1.

8 Almeida, C. B., Corradini, E., Forato, L. A., Fujihara, R., & Lopes Filho, J. F. (2018). Microstructure and thermal and functional properties of biodegradable films produced using zein. Polímeros: Ciência e Tecnologia, 28(1), 30-37. http://dx.doi.org/10.1590/0104-1428.11516.

9 Wei, B., Zhao, Y., Wei, Y., Yao, J., Chen, X., & Shao, Z. (2019). Morphology and properties of a new biodegradable material prepared from zein and poly(butylene adipate-terephthalate) by reactive blending. ACS Omega, 4(3), 5609-5616. http://dx.doi.org/10.1021/acsomega.9b00210.

10 Ribeiro, W. X., Lopes Filho, J. F., Cortes, M. S., & Tadini, C. C. (2015). Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate. Ciência Rural, 45(10), 1890-1894. http://dx.doi.org/10.1590/0103-8478cr20141391.

11 Chen, G., Dong, S., Zhao, S., Li, S., & Chen, Y. (2019). Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Industrial Crops and Products, 129, 318-326. http://dx.doi.org/10.1016/j.indcrop.2018.11.072.

12 Liang, J., Xia, Q., Wang, S., Li, J., Huang, Q., & Ludescher, R. D. (2015). Influence of glycerol on the molecular mobility, oxygen permeability and microstructure of amorphous zein films. Food Hydrocolloids, 44, 94-100. http://dx.doi.org/10.1016/j.foodhyd.2014.09.002.

13 Lawton, J. W. (2002). Zein: a history of processing and use. Cereal Chemistry, 79(1), 1-18. http://dx.doi.org/10.1094/CCHEM.2002.79.1.1.

14 Lai, H. M., & Padua, G. W. (1998). Water vapor barrier properties of zein films plasticized with oleic acid. Cereal Chemistry, 75(2), 194-199. http://dx.doi.org/10.1094/CCHEM.1998.75.2.194.

15 Xu, H., Chai, Y., & Zhang, G. (2012). Synergistic effect of oleic acid and glycerol on zein film plasticization. Journal of Agricultural and Food Chemistry, 60(40), 10075-10081. http://dx.doi.org/10.1021/jf302940j.

16 Selling, G. W., & Biswas, A. (2012). Blends of zein and nylon-6. Journal of Polymers and the Environment, 20(3), 631-637. http://dx.doi.org/10.1007/s10924-012-0426-5.

17 Sessa, D. J., Woods, K. K., Mohamed, A. A., & Palmquist, D. E. (2011). Melt-processed blends of zein with polyvinylpyrrolidone. Industrial Crops and Products, 33(1), 57-62. http://dx.doi.org/10.1016/j.indcrop.2010.08.008.

18 Habeych, E., Dekkers, B., Van der Goot, A. J., & Boom, R. (2008). Starch-zein blends formed by shear flow. Chemical Engineering Science, 63(21), 5229-5238. http://dx.doi.org/10.1016/j.ces.2008.07.008.

19 Corradini, E., Carvalho, A. J. F., Curvelo, A. A. S., Agnelli, J. A. M., & Mattoso, L. H. C. (2007). Preparation and Characterization of Thermoplastic Starch/Zein Blends. Materials Research, 10(3), 227-231. http://dx.doi.org/10.1590/S1516-14392007000300002.

20 Trujillo-de Santiago, G., Rojas-de Gante, C., García-Lara, S., Verdolotti, L., Di Maio, E., & Iannace, S. (2014). Strategies to produce thermoplastic starch–zein blends: effect on compatibilization. Journal of Polymers and the Environment, 22(4), 508-524. http://dx.doi.org/10.1007/s10924-014-0685-4.

21 Escamilla-García, M., Calderón-Domínguez, G., Chanona-Pérez, J. J., Mendoza-Madrigal, A. G., Di Pierro, P., García-Almendárez, B. E., Amaro-Reyes, A., & Regalado-González, C. (2017). Physical, structural, barrier, and antifungal characterization of chitosan–zein edible films with added essential oils. International Journal of Molecular Sciences, 18(11), 2370. http://dx.doi.org/10.3390/ijms18112370.

22 Corradini, E., Mattoso, L. H. C., Guedes, C. G. F., & Rosa, D. S. (2004). Mechanical, thermal and morphological properties of poly(epsilon-caprolactone)/zein blends. Polymers for Advanced Technologies, 15(6), 340-345. http://dx.doi.org/10.1002/pat.478.

23 Liang, J., & Chen, R. (2018). Impact of cross-linking mode on the physical properties of zein/PVA composite films. Food Packaging and Shelf Life, 18, 101-106. http://dx.doi.org/10.1016/j.fpsl.2018.10.003.

24 Chen, Y., Ye, R., Li, X., & Wang, J. (2013). Preparation and characterization of extruded thermoplastic zein-poly(propylene carbonate) film. Industrial Crops and Products, 49, 81-87. http://dx.doi.org/10.1016/j.indcrop.2013.04.040.

25 Lacroix, M., Khan, R., Senna, M., Sharmin, N., Salmieri, S., & Safrany, A. (2014). Radiation grafting on natural films. Radiation Physics and Chemistry, 94, 88-92. http://dx.doi.org/10.1016/j.radphyschem.2013.04.008.

26 Senna, M. M., Salmieri, S., El-Naggar, A.-W., Safrany, A., & Lacroix, M. (2010). Improving the compatibility of Zein/Poly(vinyl alcohol) blends by gamma irradiation and graft copolymerization of acrylic acid. Journal of Agricultural and Food Chemistry, 58(7), 4470-4476. http://dx.doi.org/10.1021/jf904088y.

27 Lawton, J. W. (2004). Plasticizers for zein: theis effect on tensile properties and water absorption of zein films. Cereal Chemistry, 81(1), 1-5. http://dx.doi.org/10.1094/CCHEM.2004.81.1.1.

28 Magoshi, J., Nakamura, S., & Murakami, K. I. (1992). Structure and physical-properties of seed proteins. 1. Glass-transition and crystallization of zein protein from corn. Journal of Applied Polymer Science, 45(11), 2043-2048. http://dx.doi.org/10.1002/app.1992.070451119.

29 Gerrard, J. A. (2002). Protein-protein crosslinking in food: methods, consequences, applications. Trends in Food Science & Technology, 13(12), 391-399. http://dx.doi.org/10.1016/S0924-2244(02)00257-1.

30 Silverstein, R. M., Webster, F. X., & Kiemle, D. (2005). Spectrometric identification of organic compounds. New York: John Wiley and Sons.

31 Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28(4), 539-548. http://dx.doi.org/10.1016/j.msec.2007.10.088.

32 Zhang, Q., Hu, X. M., Wu, M. Y., Wang, M. M., Zhao, Y. Y., & Li, T. T. (2019). Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. Reactive & Functional Polymers, 136, 34-43. http://dx.doi.org/10.1016/j.reactfunctpolym.2019.01.002.

33 Forato, L. A., Bernardes-Filho, R., & Colnago, L. A. (1998). Protein structure in KBr pellets by infrared spectroscopy. Analytical Biochemistry, 259(1), 136-141. http://dx.doi.org/10.1006/abio.1998.2599.

34 Rouf, T. B., Schmidt, G., & Kokini, J. L. (2018). Zein-Laponite (R) nanocomposites with improved mechanical, thermal and barrier properties. Journal of Materials Science, 53(18), 13317-13317. http://dx.doi.org/10.1007/s10853-018-2600-1.

35 Forato, L. A., Doriguetto, A. C., Fischer, H., Mascarenhas, Y. P., Craievich, A. F., & Colnago, L. A. (2004). Conformation of the Z19 prolamin by FTIR, NMR, and SAXS. Journal of Agricultural and Food Chemistry, 52(8), 2382-2385. http://dx.doi.org/10.1021/jf035020+.

36 Gillgren, T., Barker, S. A., Belton, P. S., Georget, D. M. R., & Stading, M. (2009). Plasticization of zein: a thermomechanical, FTIR, and dielectric study. Biomacromolecules, 10(5), 1135-1139. http://dx.doi.org/10.1021/bm801374q.

37 Corradini, E., Souto de Medeiros, E., Carvalho, A. J. F., Curvelo, A. A. S., & Mattoso, L. H. C. (2006). Mechanical and morphological characterization of starch/zein blends plasticized with glycerol. Journal of Applied Polymer Science, 101(6), 4133-4139. http://dx.doi.org/10.1002/app.23570.

38 Leroy, E., Jacquet, P., Coativy, G., Reguerre, A. L., & Lourdin, D. (2012). Compatibilization of starch-zein melt processed blends by an ionic liquid used as plasticizer. Carbohydrate Polymers, 89(3), 955-963. http://dx.doi.org/10.1016/j.carbpol.2012.04.044.

39 Giteru, S. G., Ali, M. A., & Oey, I. (2019). Solvent strength and biopolymer blending effects on physicochemical properties of zein-chitosan-polyvinyl alcohol composite films. Food Hydrocolloids, 87, 270-286. http://dx.doi.org/10.1016/j.foodhyd.2018.08.006.

40 Wei, B., Zhao, Y., Wei, Y., Yao, J., Chen, X., & Shao, Z. (2019). Morphology and properties of a new biodegradable material prepared from zein and poly(butylene adipate-terephthalate) by reactive blending. ACS Omega, 4(3), 5609-5616. http://dx.doi.org/10.1021/acsomega.9b00210.

41 Park, J. W., Testin, R. F., Park, H. J., Vergano, P. J., & Weller, C. L. (1994). Fatty acid concentration effect on tensile strength, elongation, and water vapor permeability of laminated edible films. Journal of Food Science, 59(4), 916-919. http://dx.doi.org/10.1111/j.1365-2621.1994.tb08157.x.

42 Potschke, P., & Paul, D. R. (2003). Formation of Co-continuous structures in melt-mixed immiscible polymer blends. Journal of Macromolecular Science, Part C: Polymer Reviews, C43(1), 87-141. http://dx.doi.org/10.1081/MC-120018022.

6085c0eea95395486a727964 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections