Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.10520
Polímeros: Ciência e Tecnologia
Original Article

A foldable high transparent fluorinated polyimide (HFBAPP/6FDA) film material for transparent flexible substrate

Chuanhao Cao; Lizhu Liu; Xiaorui Zhang

Downloads: 0
Views: 31

Abstract

Flexible transparent substrate materials, which was able to withstand high dynamic strain, in contrast to traditional substrate materials. A flexible and transparent material with advantages including transparency, stable size, and excellent corrosion and electrical resistance was provided. The polyimide(PI) film was prepared by introducing a structure with a high content of F atom and a fine optimization process to enhance the various properties of the film. However, the properties of the films were optimized effectively by gradient vacuum and secondary dissolution so that the film had a transmittance at 400 nm of 82%. The films with low dielectric constant and low dielectric loss represent the breakdown strength of 202 kV/mm. The glass transition temperature of the film was 267 °C, and the thermal expansion coefficient was 35ppm/k (30 °C~270 °C), indicated outstanding thermal dimensional stability. Therefore, this polyimide film was an optoelectronic device with extremely high application potential on the folding mobile phone and the PI film is the finest materials of screen.

Keywords

transparent PI, transmittance, insulation, thermal performance, dielectric properties

References

1 Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488-492. http://dx.doi.org/10.1038/nature03090. PMid:15565150.

2 Lee, J., Lee, P., Lee, H.-B., Hong, S., Lee, I., Yeo, J., Lee, S. S., Kim, T.-S., Lee, D., & Ko, S. H. (2014). Silver nanowires: room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Advanced Functional Materials, 23(34), 4171-4176. http://dx.doi.org/10.1002/adfm.201203802.

3 Wang, D., Zhang, Y., Lu, X., Ma, Z., Xie, C., & Zheng, Z. (2018). Chemical formation of soft metal electrodes for flexible and wearable electronics. Chemical Society Reviews, 47(12), 4611-4641. http://dx.doi.org/10.1039/C7CS00192D. PMid:29722373.

4 Kholmanov, I. N., Stoller, M. D., Edgeworth, J., Lee, W. H., Li, H., Lee, J., Barnhart, C., Potts, J. R., Piner, R., Akinwande, D., Barrick, J. E., & Ruoff, R. S. (2012). Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano, 6(6), 5157-5163. http://dx.doi.org/10.1021/nn300852f. PMid:22519712.

5 Ni, H. J., Liu, J. G., Wang, Z. H., & Yang, S. Y. (2015). A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. Journal of Industrial and Engineering Chemistry, 28, 16-27. http://dx.doi.org/10.1016/j.jiec.2015.03.013.

6 Li, P., Ma, J., Xu, H., Xue, X., & Liu, Y. (2016). Highly stable copper wire/alumina/polyimide composite films for stretchable and transparent heaters. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 4(16), 3581-3591. http://dx.doi.org/10.1039/C5TC04276C.

7 Moon, K.H., Chae, B., Kim, K., Lee, S., & Jung, Y. (2019). Preparation and characterization of transparent polyimide–silica composite films using polyimide with carboxylic acid groups. Polymers, 11(3), 489. http://dx.doi.org/10.3390/polym11030489. PMid:30960474.

8 Kwon, S. J., Jang, A. R., Bae, J., Kim, Y. S., & Lee, S. W. (2013). Preparation and characterization of transparent polyimide composite films for flexible substrate. Journal of Nanoelectronics & Optoelectronics, 8(6), 588-593. http://dx.doi.org/10.1166/jno.2013.1525.

9 Damaceanu, M.-D., Constantin, C.-P., Nicolescu, A., Bruma, M., Belomoina, N., & Begunov, R.-S. A. (2014). Highly transparent and hydrophobic fluorinated polyimide films with ortho -kink structure. European Polymer Journal, 50(1), 200-213. http://dx.doi.org/10.1016/j.eurpolymj.2013.10.030.

10 Xiao, T.-C., Fan, X., Fan, D., & Li, Q. (2017). High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films. Polymer Bulletin, 74(11), 4561-4575. http://dx.doi.org/10.1007/s00289-017-1974-6.

11 Chen, S., Yang, Z., & Wang, F. (2019). Preparation and characterization of polyimide/kaolinite nanocomposite films based on functionalized kaolinite. Polymer Engineering and Science, 59(s2), E380-E386. http://dx.doi.org/10.1002/pen.25069.

12 Shams, N., Haghighi, B., & Rahmati, A. (2006). Prussian blue: electrochemical behavior and operational stability. In 210th ECS Meeting. Cancun, Mexico: Curran Associates, Inc.

13 Mi, Z., Liu, Z., Yao, J., Wang, C., Zhou, C., Wang, D., Zhao, X., Zhou, H., Zhang, Y., & Chen, C. (2018). Transparent and soluble polyimide films from 1,4:3,6-dianhydro-D-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: Preparation, characterization, thermal and mechanical properties. Polymer Degradation & Stability, 151, 80-89. http://dx.doi.org/10.1016/j.polymdegradstab.2018.01.006.

14 Tapaswi, P. K., Choi, M. C., Jung, Y. S., Cho, H. J., Seo, D. J., & Ha, C. S. (2014). Synthesis and characterization of fully aliphatic polyimides from an aliphatic dianhydride with piperazine spacer for enhanced solubility, transparency, and low dielectric constant. Journal of Polymer Science. Part A, Polymer Chemistry, 52(16), 2316-2328. http://dx.doi.org/10.1002/pola.27242.

15 Yu, H. C., Jung, J. W., Choi, J. Y., Oh, S. Y., & Chung, C. M. (2017). Structure-property relationship study of partially aliphatic copolyimides for preparation of flexible and transparent polyimide films. Journal of Macromolecular Science: Part A - Chemistry, 54(2), 97-104. http://dx.doi.org/10.1080/10601325.2016.1261622.

16 Jang, W., Seo, J., Lee, C., Paek, S. H., & Han, H. (2010). Residual stress and mechanical properties of polyimide thin films. Journal of Applied Polymer Science, 113(2), 976-983. http://dx.doi.org/10.1002/app.29558.

17 Lu, Y. H., Hu, Z. Z., Bian, J. M., & Wang, Y. F. (2011). Transparent polyimides and their ito flexible conductive film. Advanced Materials Research, 239-242, 1211-1214. http://dx.doi.org/10.4028/www.scientific.net/AMR.239-242.1211

18 Cheng, S. W., Huang, T. T., Tsai, C. L., & Liou, G. S. (2017). Highly transparent polyhydroxyimide/tio2 and zro2 hybrid films with high glass transition temperature (tg) and low coefficient of thermal expansion (cte) for optoelectronic application. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 5(33), 8444-8453. http://dx.doi.org/10.1039/C7TC02819A.

19 Yang, Y., Park, J. H., Jung, Y., Lee, S. G., Park, S. K., & Kwon, S. (2017). Effect of fluorination on haze reduction in transparent polyimide films for flexible substrates. Journal of Applied Polymer Science, 134(4), 44375. http://dx.doi.org/10.1002/app.44375.

20 Bae, W. J., Kovalev, M. K., Kalinina, F., Kim, M., & Cho, C. (2016). Towards colorless polyimide/silica hybrids for flexible substrates. Polymer, 105, 124-132. http://dx.doi.org/10.1016/j.polymer.2016.10.023.

21 Jun, J., Lee, J. H., Choi, H. J., Moon, S., Kim, I. D., & Lee, H. (2017). Fabrication of optically-functionalized colorless polyimide patterns with high durability. Applied Surface Science, 423(30), 881-886. http://dx.doi.org/10.1016/j.apsusc.2017.06.277.

22 Khosa, M. K., Jamal, M. A., Iqbal, R., Muneer, M., Saif, M. J., Zia, K. M., & Hamid, M. (2017). Thermal stability and mechanical properties of organo-soluble and processable polyimides for high-temperature materials. Polymer-Plastics Technology and Engineering, 56(1), 22-28. http://dx.doi.org/10.1080/03602559.2016.1185627.

23 Jo, B. W., & Ahn, K. H. (2014). The effect of film thickness on the depth‐wise chain orientation of rod‐shaped polyimide. Journal of Polymer Science. Part B, Polymer Physics, 52(12), 848-857. http://dx.doi.org/10.1002/polb.23498.

24 Liu, L., Cao, C., Ma, X., Zhang, X., & Lv, T. (2020). Thermal conductivity of polyimide/aln and polyimide/(aln+bn) composite films prepared by in-situ polymerization. Journal of Macromolecular Science Part A Chemistry, 57(5), 398-407. http://dx.doi.org/10.1080/10601325.2019.1703555.

25 Wu, G., Li, J., Wang, K., Wang, Y., Pan, C., & Feng, A. (2017). In situ synthesis and preparation of tio2/polyimide composite containing phenolphthalein functional group. Journal of Materials Science Materials in Electronics, 28(9), 6544-6551. http://dx.doi.org/10.1007/s10854-017-6343-6.

26 Wang, Z. H., Chen, X., Yang, H. X., Zhao, J., & Yang, S. Y. (2019). The in-plane orientation and thermal mechanical properties of the chemically imidized polyimide films. Chinese Journal of Polymer Science, 37(3), 268-278. http://dx.doi.org/10.1007/s10118-019-2173-8.

27 Lanč, M., Sysel, P., Šoltys, M., Štěpánek, F., Fónod, K., Klepić, M., Vopička, O., Lhotka, M., Ulbrich, P., & Friess, K. (2018). Synthesis, preparation and characterization of novel hyperbranched 6FDA-TTM based polyimide membranes for effective CO2 separation: effect of embedded mesoporous silica particles and siloxane linkages. Polymer, 144, 33-42. http://dx.doi.org/10.1016/j.polymer.2018.04.033.

28 Wu, G., Cheng, Y., Wang, Z., Wang, K., & Feng, A. (2017). In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. Journal of Materials Science Materials in Electronics, 28(1), 576-581. http://dx.doi.org/10.1007/s10854-016-5560-8.

29 Luo, L., Zhang, J., Huang, J., Feng, Y., Peng, C., Wang, X., & Liu, X. (2016). The dominant factor for mechanical property of polyimide films containing heterocyclic moieties: in‐plane orientation, crystallization, or hydrogen bonding. Journal of Applied Polymer Science, 133(39), 44000. http://dx.doi.org/10.1002/app.44000.

30 Shen, J., Li, F., Cao, Z., Barat, D., & Tu, G. (2017). Light scattering in nanoparticle doped transparent polyimide substrates. ACS Applied Materials & Interfaces, 9(17), 14990-14997. http://dx.doi.org/10.1021/acsami.7b03070. PMid:28397490.

31 Cao, C., Liu, L., Ma, X., Zhang, X., & Lv, T. (2020). Synthesis and properties of fluorinated copolymerized polyimide films. Polímeros: Ciência e Tecnologia, 30(2), e2020017. http://dx.doi.org/10.1590/0104-1428.10019.
 

60a7a6c8a9539550de43e0e4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections