Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.10517
Polímeros: Ciência e Tecnologia
Original Article

Core-shell magnetic particles obtained by seeded suspension polymerization of acrylic monomers

Castanharo, Jacira Aparecida; Ferreira, Ivana Lourenço de Mello; Silva, Manoel Ribeiro da; Costa, Marcos Antonio da Silva

Downloads: 0
Views: 151

Abstract

Abstract: Core-shell magnetic polymer particles were synthesized by seeded suspension polymerization. The core was made of poly(methyl methacrylate-co-divinylbenzene) and a mixture of magnetite, maghemite and goethite (P(MMA-co-DVB)-M). The shell was composed of poly(glycidyl methacrylate-co-divinylbenzene) (P(GMA-co-DVB)). These particles were characterized by infrared spectrometry (FTIR), thermal analysis (TG), scanning electron microscopy (SEM), dynamic light scattering (DLS) and vibrating sample magnetometry (VSM). The results showed the formation of core-shells with good magnetic properties (≈7.1 emu/g) and good thermal resistance (≈300 ºC). The light scattering experiments showed that the particle size of these materials changed from 5-90 microns (core) to 5-120 microns (core-shell). Scanning electron microscopic images were useful to show the formation of P(GMA-co-DVB) shells on P(MMA- co-DVB)-M cores. The materials synthesized in this work have potential to be modified and employed in magnetic separation processes in the biotech and environmental fields.

Keywords

magnetic polymer microspheres; core-shell; seeded suspension polymerization; biopolymers

References

Ghosh Chaudhuri, R., & Paria, S. (2012). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization and applications. Chemical Reviews , 112(4), 2373-2433. http://dx.doi.org/10.1021/cr100449n. PMid:22204603. 

Pei, X., Zhai, K., Tan, Y., Xu, K., Lu, C., Wang, P., Wang, T., Chen, C., Tao, Y., Dai, L., & Li, H. (2017). Synthesis of magnetite starch-polystyrene core-shell nanoparticles via seeded emulsion polymerization without stabilizer. Polymer108, 78-86. http://dx.doi.org/10.1016/j.polymer.2016.11.035. 

Lu, M., Bai, S., Yang, K., & Sun, Y. (2007). Synthesis and characterization of magnetic polymer microspheres with a core–shell structure. China Particuology , 5(1-2), 180-185. http://dx.doi.org/10.1016/j.cpart.2007.01.012. 

Pinto, M. C. C., Freire, D. M. G., & Pinto, J. C. (2014). Influence of the morphology of core-shell supports on the immobilization of lipase B from candida antarctica. Molecules (Basel, Switzerland)19(8), 12509-12530. http://dx.doi.org/10.3390/molecules190812509. PMid:25153868. 

Besteti, M. D., Cunha, A. G., Freire, D. M. G., & Pinto, J. C. (2014). Core/shell polymer particles by semibatch combined suspension/emulsion polymerizations for enzyme immobilization. Macromolecular Materials and Engineering299(2), 135-143. http://dx.doi.org/10.1002/mame.201300023. 

Ribeiro, L. F. B., Gonçalves, O. H., Marangoni, C., Motz, G., & Machado, R. A. F. (2017). Chemical resistance of core-shell particles (PS/PMMA) polymerized by seeded suspension. Polímeros: Ciência e Tecnologia27(3), 225-229. http://dx.doi.org/10.1590/0104-1428.13216. 

Formiga, W. J. F., Mello, I. L., Costa, M. A. S., Silva, M. R., & Oliveira, M. G. (2013). Microesferas poliméricas magnéticas à base de estireno e divinilbenzeno com morfologia casca e núcleo. Polímeros: Ciência e Tecnologia , 23(2), 262-269. http://dx.doi.org/10.4322/polimeros.2013.075. 

Horák, D., Hlídková, H., Hiraoui, M., Taverna, M., Proks, V., Mázl Chánová, E., Smadja, C., & Kučerová, Z. (2014). Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: Application to the immunocapture of b-amyloid peptides. Macromolecular Bioscience14(11), 1590-1599. http://dx.doi.org/10.1002/mabi.201400249. PMid:25142028. 

Chung, T. H., Chang, J. Y., & Lee, W. C. (2009). Application of magnetic poly(styrene–glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells. Journal of Magnetism and Magnetic Materials321(10), 1635-1638. http://dx.doi.org/10.1016/j.jmmm.2009.02.103. 

Horak D., Svobodova Z., Autebert J., Coudert B., Plichta Z., Kralovec K., Bılkova Z., & Viovy J. L. (2012). Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells. Journal of Biomedical Materials Research Part A101A(1):22-32. http://dx.doi.org/10.1002/jbm.a.34297. 

Sun, X., Yang, L., Xing, H., Zhao, J., Li, X., Huang, Y., & Liu, H. (2014). High capacity adsorption of Cr(VI) from aqueous solution using polyethylenimine-functionalized poly(glycidyl methacrylate) microspheres. Colloids and Surfaces. A, Physicochemical and Engineering Aspects457, 160-168. http://dx.doi.org/10.1016/j.colsurfa.2014.05.061. 

Sandić, Z. D., Žunić, M., Maksin, D. D., Milutinović-Nikolić, A. D., Popović, A. R., Jovanović, D. M., & Nastasović, A. B. (2014). Glycidyl methacrylate macroporous copolymer grafted with diethylene triamine as sorbent for reactive black 5. Hemijska Industrija68(6), 685-699. http://dx.doi.org/10.2298/HEMIND140127023S. 

Castanharo, J. A., Ferreira, I. L. M., Silva, M. R., Costa, G. M., Oliveira, M. G., & Costa, M. A. S. (2015). Microesferas magnéticas à base de poli(metacrilato de metila- co-divinilbenzeno) obtidas por polimerização em suspensão. Polímeros: Ciência e Tecnologia25(2), 192-199. http://dx.doi.org/10.1590/0104-1428.1666. 

Gonçalves, O. H., Machado, R. A., Araújo, P. H., & Asua, J. M. (2009). Secondary particle formation in seeded suspension polymerization. Polymer50(2), 375-381. http://dx.doi.org/10.1016/j.polymer.2008.11.006. 

Lin, W., Biegler, L. T., & Jacobson, A. M. (2010). Modeling and optimization of a seeded suspension polymerization process. Chemical Engineering Science65(15), 4350-4362. http://dx.doi.org/10.1016/j.ces.2010.03.052. 

Rabelo, D., & Coutinho, F. M. B. (1994). Porous structure formation and swelling properties of styrene-divinylbenzene copolymers. European Polymer Journal,30(6), 675-682. http://dx.doi.org/10.1016/0014-3057(94)90115-5.

Belfer, S., Egozy, Y., & Korngold, E. (1984). Resins containing extractants: morphology of polymers prepared by polymerization of vinyl monomers in the presence of uranium-selective extractants. Journal of Applied Polymer Science,29(12), 3825-3836. http://dx.doi.org/10.1002/app.1984.070291216. 

Heydarpoor, S., Abbasi, F., Jalili, K., & Najafpour, M. (2015). Synthesis of core-shell PS/PMMA expandable particles via seeded suspension polymerization. Journal of Polymer Research22(8), 151-161. http://dx.doi.org/10.1007/s10965-015-0789-0. 

Lenzi, M. K., Silva, F. M., Lima, E. L., & Pinto, J. C. (2003). Semibatch styrene suspension polymerization processes. Journal of Applied Polymer Science89(11), 3031-3038. http://dx.doi.org/10.1002/app.12443. 

Daigle, J. C., & Claverie, J. P. (2008). A simple method for forming hybrid core-shell nanoparticles suspended in water. Journal of Nanomaterials1, 1-8. http://dx.doi.org/10.1155/2008/609184. 

Liu, X., Fan, X. D., Tang, M. F., & Nie, Y. (2008). Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends. International Journal of Molecular Sciences9(3), 342-354. http://dx.doi.org/10.3390/ijms9030342. PMid:19325753. 

Lan, F., Liu, K. X., Jiang, M., Zeng, X. B., Wu, Y., & Gu, Z. W. (2011). Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization. Nanotechnology22(22), 225604-225610. http://dx.doi.org/10.1088/0957-4484/22/22/225604. PMid:21454944. 

Lee, Y., Rho, J., & Jung, B. (2003). Preparation of magnetic ion-exchange resins by the suspension polymerization of styrene with magnetite. Journal of Applied Polymer Science89(8), 2058-2067. http://dx.doi.org/10.1002/app.12365. 

Yuan, D., Zhang, Q., & Dou, J. (2010). Supported nanosized palladium on superparamagnetic composite microspheres as an efficient catalyst for Heck reaction. Catalysis Communications , 11(7), 606-610. http://dx.doi.org/10.1016/j.catcom.2010.01.005.

Conceição, V. N., Souza, L. M., Merlo, B. B., Filgueiras, P. R., Poppi, R. J., & Romã, W. (2014). Estudo do teste de Scott via técnicas espectroscópicas: um método alternativo para diferenciar cloridrato de cocaína e seus adulterantes. Quimica Nova37, 1538-1544. http://dx.doi.org/10.5935/0100-4042.20140240. 

5c55bf8f0e8825e319b25bb3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections