Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.10020
Polímeros: Ciência e Tecnologia
Original Article

Development of a bio-based adhesive from Protium heptaphyllum resin

Marcos Danilo Costa de Almeida; João Antonio Pessoa da Silva; Felipe Fernando da Costa Tavares; Ludmila Leite Araujo; Jefferson de Souza Zeferino; Ruth Marlene Campomanes Santana

Downloads: 0
Views: 153

Abstract

In this work, a bio-based adhesive is prepared from Protium heptaphyllum resin. The resin is first characterized by 1H and 13C nuclear magnetic resonance spectroscopy and the bioadhesive is then prepared using a simple mixture of the resin with linseed oil, catalyzed by cobalt octanoate, to induce crosslinking. The precursors and bioadhesive obtained are characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The NMR analysis shows the presence of groups of triterpenes, such as α- and β-amyrins, and diols, such as brein and maniladiol. Thermogravimetric analysis reveals that the resin has less thermal stability than the bioadhesive. Mechanical tests indicate that the bioadhesive has greater adhesion strength compared to the commercial adhesive, reaching an average stress at break of 7.66 and 0.113 MPa for the wood and carbon steel substrates, respectively. In conclusion, the bioadhesive can be used for the production of composites.

Keywords

adhesive, Protium heptaphyllum, reticulation reaction, linseed oil

References

1 Conner, A. H., & Bhuyan, M. S. H. (2017). Wood: adhesives. Reference Module in Materials Science and Materials Engineering, 1-17.https://doi.org/10.1016/b978-0-12-803581-8.01932-9.

2 Norström, E., Fogelström, L., Nordqvist, P., Khabbaz, F., & Malmström, E. (2015). Xylan - a green binder for wood adhesives. European Polymer Journal, 67, 483-493. http://dx.doi.org/10.1016/j.eurpolymj.2015.02.021.

3 Sahoo, S. K., Khandelwal, V., & Manik, G. (2019). Synthesis and characterization of low viscous and highly acrylated epoxidized methyl ester based green adhesives derived from linseed oil. International Journal of Adhesion and Adhesives, 89, 174-177. http://dx.doi.org/10.1016/j.ijadhadh.2019.01.007.

4 Mo, J., Wang, F., Xu, Z., Feng, C., Fang, Y., Tang, X., & Shen, X. (2019). Characterization and performance of soybean protein modified by tyrosinase. International Journal of Adhesion and Adhesives, 92, 111-118. http://dx.doi.org/10.1016/j.ijadhadh.2019.04.013.

5 Pang, H., Zhao, S., Wang, Z., Zhang, W., Zhang, S., & Li, J. (2020). Development of soy protein-based adhesive with high water resistance and bonding strength by waterborne epoxy crosslinking strategy. International Journal of Adhesion and Adhesives, 100, 102600. http://dx.doi.org/10.1016/j.ijadhadh.2020.102600.

6 Moghadam, P. N., Yarmohamadi, M., Hasanzadeh, M., & Nuri, S. (2016). Preparation of polyurethane wood adhesives by polyols formulated with polyester polyols based on castor oil. International Journal of Adhesion and Adhesives, 68, 273-282. http://dx.doi.org/10.1016/j.ijadhadh.2016.04.004.

7 Oliveira, P. R., May, M., Panzera, T. H., Scarpa, F., & Hiermaier, S. (2020). Reinforced biobased adhesive for eco-friendly sandwich panels. International Journal of Adhesion and Adhesives, 98, 102550. http://dx.doi.org/10.1016/j.ijadhadh.2020.102550.

8 Ji, X., Li, B., Yuan, B., & Guo, M. (2017). Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohydrate Polymers, 176, 273-280. http://dx.doi.org/10.1016/j.carbpol.2017.08.100. PMid:28927608.

9 Ji, X., & Guo, M. (2018). Preparation and properties of a chitosan-lignin wood adhesive. International Journal of Adhesion and Adhesives, 82, 8-13. http://dx.doi.org/10.1016/j.ijadhadh.2017.12.005.

10 Vargas Villanueva, J. G., Sarmiento Huertas, P. A., Galan, F. S., Esteban Rueda, R. J., Briceño Triana, J. C., & Casas Rodriguez, J. P. (2019). Bio-adhesion evaluation of a chitosan-based bone bio-adhesive. International Journal of Adhesion and Adhesives, 92, 80-88. http://dx.doi.org/10.1016/j.ijadhadh.2019.04.009.

11 Vieira, R. K., Vieira, A. K., Kim, J. T., & Netravali, A. N. (2014). Characterization of Amazonic White Pitch (Protium heptaphyllum) for potential use as ‘green’ adhesive. Journal of Adhesion Science and Technology, 28(10), 963-974. http://dx.doi.org/10.1080/01694243.2014.880220.

12 Bandeira, P. N., Deusdênia, O., Pessoa, L., Teresa, M., Trevisan, S., & Gomes, L. (2002). Secondary metabolites of Protium heptaphyllum march. Quimica Nova, 25(6b), 1078-1080. http://dx.doi.org/10.1590/S0100-40422002000700006.

13 Addis, C. C., Koh, R. S., & Gordon, M. B. (2020). Preparation and characterization of a bio-based polymeric wood adhesive derived from linseed oil. International Journal of Adhesion and Adhesives, 102, 102655. http://dx.doi.org/10.1016/j.ijadhadh.2020.102655.

14 Juita, Dlugogorski, B. Z., Kennedy, E. M., & Mackie, J. C. (2011). Oxidation reactions and spontaneous ignition of linseed oil. Proceedings of the Combustion Institute, 33(2), 2625-2632. http://dx.doi.org/10.1016/j.proci.2010.06.096.

15 American Society for Testing and Materials (2019). ASTM D 1002-10: Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-To-Metal). West Conshohocken: ASTM.

16 American Society for Testing and Materials (2017). ASTM D 906: Standard Test Method for Strength Properties of Adhesives in Plywood Type Construction in Shear by Tension Loading. West Conshohocken: ASTM.

17 Vieira, G. M., Jr., Souza, C. M., & Chaves, M. H. (2005). The Protium heptaphyllum resin: isolation, structural characterization and evaluation of thermal properties. Quimica Nova, 28(2), 183-187. http://dx.doi.org/10.1590/S0100-40422005000200003.

18 Vásquez, L. H., Palazon, J., & Navarro-Ocaña, A. (2012). The pentacyclic triterpenes e α, β-amyrins: a review of sources and biological activities. In: L. H. Vázquez (Ed.), Phytochemicals: a global perspective of their role in nutrition and health (pp. 487-502). United States: IntechOpen.

19 Maia, J. G., & Zoghbi, M. G. B. (1998). Óleos essenciais da Amazônia: inventário da flora aromática. In: L. G. J. Farias & C. M. L. Costa. Tópicos especiais de produtos naturais (pp. 147-162). Brasil: POEMA.

20 da Silva Júnior, W. F., Pinheiro, J. G. O., Moreira, C. D. L. F. A., Rüdiger, A. L., Barbosa, E. G., Lima, E. S., da Veiga Júnior, V. F., da Silva Júnior, A. A., Aragão, C. F. S., & de Lima, Á. A. N. (2017). Thermal behavior and thermal degradation kinetic parameters of triterpene a, b amyrin. Journal of Thermal Analysis and Calorimetry, 127(2), 1757-1766. http://dx.doi.org/10.1007/s10973-016-6046-x.

21 Lazzari, M., & Chiantore, O. (1999). Drying and oxidative degradation of linseed oil. Polymer Degradation & Stability, 65(2), 303-313. http://dx.doi.org/10.1016/S0141-3910(99)00020-8.

22 Lima, G. E. S., Nunes, E. V., Dantas, R. C., Simone, C. A., Meneghetti, M. R., & Meneghetti, S. M. P. (2018). Catalytic behaviors of coiI and MnII compounds bearing α-Diimine ligands for oxidative polymerization or drying oils. Journal of the Brazilian Chemical Society, 29(2), 412-418. http://dx.doi.org/10.21577/0103-5053.20170155.

23 Charamzová, I., Vinklárek, J., Kalenda, P., & Honzícek, J. (2018). Application of oxovanadium complex stabilized by N,N,N,N-chelating ligand in air-drying paints. Coatings, 8(6), 204. http://dx.doi.org/10.3390/coatings8060204.

24 Gardner, D. J., Blumentritt, M., Wang, L., & Yildirim, N. (2015). Adhesion theories in wood adhesive bonding. In K. L. Mittal (Ed.), Progress in adhesion and adhesives (pp. 125-168). United States: Scrivener Publishing. http://dx.doi.org/10.1002/9781119162346.ch5.

25 Wei, H., Xia, J., Zhou, W., Zhou, L., Hussain, G., Li, Q., & Ostrikov, K. (2020). Adhesion and cohesion of epoxy-based industrial composite coatings. Composites. Part B, Engineering, 193, 108035. http://dx.doi.org/10.1016/j.compositesb.2020.108035.

26 Baldan, A. (2012). Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives, 38, 95-116. http://dx.doi.org/10.1016/j.ijadhadh.2012.04.007.

27 Chen, P., Wang, Y., Li, J., Wang, H., & Zhang, L. (2018). Adhesion and erosion properties of epoxy resin composite coatings reinforced with fly ash cenospheres and short glass fibers. Progress in Organic Coatings, 125, 489-499. http://dx.doi.org/10.1016/j.porgcoat.2018.09.029.

28 American Society for Testing and Materials – ASTM. (2019). ASTM D5573-99: standard practice for classifying failure modes in fiber-reinforced-plastic (FPR). West Conshohocken: ASTM.

29 Silva, L. F. M., Ochsner, A., & Adams, R. D. (2011). Handbook of adhesion technology. Berlin: Springer. http://dx.doi.org/10.1007/978-3-642-01169-6.
 

61a522d8a953953c88734393 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections