Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synthesis and properties of fluorinated copolymerized polyimide films

Chuanhao Cao; Lizhu Liu; Xinyu Ma; Xiaorui Zhang; Tong Lv

Downloads: 0
Views: 34


Two series of fluorinated copolymerized polyimide films with different dianhydride ratios were prepared via the conventional two-step method by using 4,4-oxydianiline(ODA) as the diamine monomer, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride(6FDA), 4,4'-oxydiphthalic anhydride(ODPA) and 3,3',4,4'- biphenyl tetracarboxylic dianhydride(BPDA) as the dianhydride monomer in N, N-dimethylacetamide. With the increase of 6FDA in the proportion of dianhydride, the tensile strength of the polyimide film showed a decreasing trend. This work provided a high performance film. The mass retention rate at 800°C was above 50%. The glass transition temperatures of the two films were 260 °C and 275 °C. The storage modulus of the two were 1500 MPa and 1250 MPa. The loss modulus were 218.70 MPa and 120.74 MPa. The transmittance of the film was 71.43%. The transmittance of fluorinated copolymerized polyimide films were significantly improved in the visible region of ultraviolet light, indicating that the polyimide film with high transmittance, high tensile strength, high heat resistance and high storage modulus was successfully prepared. It had an excellent application prospect in the field of flexible display.


fluoropolymers, polyimides, copolymerization, solubility, transparency


1 Liao, W. H., Yang, S. Y., Hsiao, S. T., Wang, Y. S., Li, S. M., Ma, C. C. M., Tien, H.-S., & Zeng, S.-J. (2014). Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Applied Materials & Interfaces, 6(18), 15802-15812. http://dx.doi.org/10.1021/am504342j. PMid:25153775.

2 Cheng, S.-W., Huang, T.-T., Tsai, C.-L., & Liou, G.-S. (2017). Highly transparent polyhydroxyimide/tio2 and zro2 hybrid films with high glass transition temperature (tg) and low coefficient of thermal expansion (cte) for optoelectronic application. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 5(33), 5. http://dx.doi.org/10.1039/C7TC02819A.

3 Ogura, T., Higashihara, T., & Ueda, M. (2010). Low‐CTE photosensitive polyimide based on semialicyclic poly(amic acid) and photobase generator. Journal of Polymer Science. Part A, Polymer Chemistry, 48(6), 1317-1323. http://dx.doi.org/10.1002/pola.23892.

4 Kim, B. R., Kang, J. W., Lee, K. Y., Son, J. M., & Ko, M. J. (2007). Physical properties of low-kfilms based on the co-condensation of methyltrimethoxysilane with a bridged silsesquioxane. Journal of Materials Science, 42(12), 4591-4602. http://dx.doi.org/10.1007/s10853-006-0575-9.

5 Mi, Z., Liu, Z., Yao, J., Wang, C., Zhou, C., Wang, D., Zhao, X., Zhou, H., Zhang, Y., & Chen, C. (2018). Transparent and soluble polyimide films from 1,4:3,6- dianhydro-d-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: preparation, characterization, thermal and mechanical properties. Polymer Degradation & Stability, 51, 80-89. http://dx.doi.org/10.1016/j.polymdegradstab.2018.01.006.

6 Williams, J. C., Nguyen, B. N., Mccorkle, L., Scheiman, D., Griffin, J. S., Steiner, S. A. 3rd, & Meador, M. (2017). Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity. ACS Applied Materials & Interfaces, 9(2), 1801-1809. http://dx.doi.org/10.1021/acsami.6b13100. PMid:28060486.

7 Fan, W., Zuo, L., Zhang, Y., Chen, Y., & Liu, T. (2018). Mechanically strong polyimide / carbon nanotube composite aerogels with controllable porous structure. Composites Science and Technology, 156, 186-191. http://dx.doi.org/10.1016/j.compscitech.2017.12.034.

8 Huang, X. H., Huang, W., Liu, J. Y., Meng, L., & Yan, D. (2012). Synthesis of highly soluble and transparent polyimides. Polymer International, 61(10), 1503-1509. http://dx.doi.org/10.1002/pi.4235.

9 Moon, K. H., Chae, B., Kim, K. S., Lee, S. W., & Jung, Y. M. (2019). Preparation and characterization of transparent polyimide–silica composite films using Polyimide with Carboxylic Acid Groups. Polymers, 11(3), 489. http://dx.doi.org/10.3390/polym11030489. PMid:30960474.

10 Lu, Y., Hu, Z., Wang, Y., & Fang, Q. X. (2012). Organosoluble and light-colored fluorinated semialicyclic polyimide derived from 1,2,3,4-cyclobutanetetracarboxylic dianhydride. Journal of Applied Polymer Science, 125(2), 1371-1376. http://dx.doi.org/10.1002/app.35265.

11 Ando, S., Matsuura, T., & Sasaki, S. (1997). Coloration of aromatic polyimides and electronic properties of their source materials. Polymer Journal, 29(1), 69-76. http://dx.doi.org/10.1295/polymj.29.69.

12 Chen, S., Yang, Z., & Wang, F. (2019). Preparation and characterization of polyimide/ kaolinite nanocomposite films based on functionalized kaolinite. Polymer Engineering and Science, 59(s2), E380-E386. http://dx.doi.org/10.1002/pen.25069.

13 Huang, X. H., Pei, X. L., Wang, L. C., Mei, M., Liu, C.-J., & Wei, C. (2016). Design and synthesis of organosoluble and transparent polyimides containing bulky substituents and noncoplanar structures. Journal of Applied Polymer Science, 133(14), 43266. http://dx.doi.org/10.1002/app.43266.

14 Yin, X., Feng, Y., Zhao, Q., Li, Y., Li, S., Dong, H., Hu, W.-P., & Feng, W. (2018). A highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite film with low dielectric constant. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 6(24), 6378-6384. http://dx.doi.org/10.1039/C8TC00998H.

15 Yang, C. P., Hsiao, S. H., & Chen, K. H. (2002). Organosoluble and optically transparent fluorine-containing polyimides based on 4,4′-bis(4-amino -2-trifluoromethylphenoxy)-3,3′,5,5′-tetramethylbiphenyl. Polymer, 43(19), 5095-5104. http://dx.doi.org/10.1016/S0032-3861(02)00359-2.

16 Wang, C. Y., Li, G., & Jiang, J. M. (2009). Synthesis and properties of fluorinated poly(ether ketone imide)s based on a new unsymmetrical and concoplanar diamine: 3,5-dimethyl-4-(4-amino-2-trifluoromethylphenoxy)-4′-aminobenzophenone. Polymer, 50(7), 1709-1716. http://dx.doi.org/10.1016/j.polymer.2009.02.006.

17 Xiao, T., Fan, X., Fan, D., & Li, Q. (2017). High thermal conductivity and low absorptivity/ emissivity properties of transparent fluorinated polyimide films. Polymer Bulletin, 74(11), 4561-4575. http://dx.doi.org/10.1007/s00289-017-1974-6.

18 Liu, L.-Z., Cao, C.-H., Ma, X.-Y., Zhang, X.-R., & Lv, T. (2020). Thermal conductivity of polyimide/AlN and polyimide/(AlN + BN) composite films prepared by in-situ polymerization. Journal of Macromolecular Science. Part A, 57(5), 398-407. http://dx.doi.org/10.1080/10601325.2019.1703555.

19 Shen, J., Li, F., Cao, Z., Barat, D., & Tu, G. (2017). Light Scattering in Nanoparticle Doped Transparent Polyimide Substrates. ACS Applied Materials & Interfaces, 9(17), 14990-14997. http://dx.doi.org/10.1021/acsami.7b03070. PMid:28397490.

20 Tong, Y. J., Cheng, Y. X., Ding, M. X., Xing, Y., & Lin, Y. H. (1998). Polyimide structure-Property Relationships I. Polyimide Properties υs Dianhydride Configuration. Chinese Chemical Letters, 10, 971-972.

21 Wu, G., Li, J., Wang, K., Wang, Y., Pan, C., & Feng, A. (2017). In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. Journal of Materials Science Materials in Electronics, 28(9), 6544-6551. http://dx.doi.org/10.1007/s10854-017-6343-6.

22 Wu, G., Cheng, Y., Wang, Z., Wang, K., & Feng, A. (2017). In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. Journal of Materials Science Materials in Electronics, 28(1), 576-581. http://dx.doi.org/10.1007/s10854-016-5560-8.

23 Purushothaman, R., Bilal, I. M., & Palanichamy, M. (2011). Effect of chemical structure of aromatic dianhydrides on the thermal, mechanical and electrical properties of their terpolyimides with 4,4′-oxydianiline. Journal of Polymer Research, 18(6), 1597-1604. http://dx.doi.org/10.1007/s10965-011-9564-z.

24 Eichstadt, A. E., Ward, T. C., Bagwell, M. D., Farr, I. V., Dunson, D. L., & Mcgrath, J. E. (2002). Structure-property relationships for a series of amorphous partially aliphatic polyimides. Journal of Polymer Science. Part B, Polymer Physics, 40(14), 1503-1512. http://dx.doi.org/10.1002/polb.10210.

25 Liu, H., Zhai, L., Bai, L., He, M., Wang, C., Mo, S., & Fan, L. (2019). Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer, 163(1), 106-114. http://dx.doi.org/10.1016/j.polymer.2018.12.045.

26 Li, Z., Kou, K., Zhang, J., Zhang, Y., Wang, Y., & Pan, C. (2017). Solubility, electrochemical behavior and thermal stability of polyimides synthesized from 1,3,5-triazine-based diamine. Journal of Materials Science Materials in Electronics, 28(8), 6079-6087. http://dx.doi.org/10.1007/s10854-016-6284-5.

27 Wang, C., Cao, S., Chen, W., Xu, C., Zhao, X., Li, J., & Ren, Q. (2017). Synthesis and properties of fluorinated polyimides with multi-bulky pendant groups. RSC Advances, 7(42), 26420-26427. http://dx.doi.org/10.1039/C7RA01568B.

28 Kim, M. K., Hwang, S. H., Jung, H. S., Oh, T. S., Kim, J. H., & Yoo, J. B. (2018). Inkjet Printing of SiO2 Hollow Spheres/Polyimide Hybrid Films for Foldable Low-k ILD. Macromolecular Research, 26(12), 1123-1128. http://dx.doi.org/10.1007/s13233-019-7001-z.

29 Yang, C. Y., Hsu, L. C., & Chen, J. S. (2005). Synthesis and properties of 6fda-bisaaf-ppd copolyimides for microelectronic applications. Journal of Applied Polymer Science, 98(5), 2064-2069. http://dx.doi.org/10.1002/app.22410.

30 Chang, H. C., Byung, H. S., & Chang, J. (2013). Colorless and transparent polyimide nanocomposites: comparison of the properties of homo- and copolymers. Journal of Industrial and Engineering Chemistry, 19(5), 1593-1599. http://dx.doi.org/10.1016/j.jiec.2013.01.028.

5f6debd90e8825d10697b915 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections