Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.10017
Polímeros: Ciência e Tecnologia
Original Article

Presence of iron in polymers extruded with corrosive contaminants or abrasive fillers

Franco, Marcos Fernado; Gadioli, Renan; De Paoli, Marco Aurelio

Downloads: 0
Views: 34

Abstract

Off-site measurements of the dimensions of extruder screws are used to monitor their wear. This wear causes the presence of metals in the processed polymer. We detected the presence of iron in polymers processed with corrosive contaminants or abrasive fillers. To this end we processed poly(ethylene terephthalate), PET, pure or contaminated with poly(vinyl chloride), PVC, and other thermoplastics reinforced with glass fibers, talc or vegetal fibers, and analyzed the metals in the processed materials by X-ray fluorescence spectroscopy. We show that iron dispersed in the polymer melt is generated by corrosion from the PET contaminated with PVC and by erosion from abrasive fillers. The contents of iron in the extruded polymers clearly indicate equipment wear. This contaminant acts as a polymer pro-degradant, decreasing its lifetime. Additionally, we show that the lower concentration of iron for composites with vegetal fibers indicates a lower abrasion in comparison to talc and glass fibers.

Keywords

extrusion; fibers; fillers; iron contamination; talc

References

1 Griskey, R. G. (1995). Polymer process engineering: a modern approach (pp. 278-310). London: Chapman and Hall. http://dx.doi.org/10.1007/978-94-011-0581-1_7

2 Reifenhäuser Reiloy. (2015). Barrel and screw handbook (10th ed., pp. 35-36). Reiloy: Reifenhäuser Gruppe. 

3 Reifenhäuser Reiloy. (2015). Barrel and screw handbook (10th ed., pp. 36-37). Reiloy: Reifenhäuser Gruppe. 

4 Osawa, Z. (1988). Role of metals and metal-deactivators in polymer degradation. Polymer Degradation & Stability20(3-4), 203-236. http://dx.doi.org/10.1016/0141-3910(88)90070-5

5 Assadi, R., Colin, X., & Verdu, J. (2004). Irreversible structural changes during PET recycling by extrusion. Polymer45(13), 4403-4412. http://dx.doi.org/10.1016/j.polymer.2004.04.029

6 Awaja, F., & Pavel, D. (2005). Recycling of PET. European Polymer Journal41(7), 1453-1477. http://dx.doi.org/10.1016/j.eurpolymj.2005.02.005

7 Hjertberg, T., & Sörvik, E. M. (1984). Thermal Degradation of PVC. In E. D. Owen (Ed.), Degradation and stabilization of PVC (pp. 21-80). Essex: Elsevier Applied Science Publishers. http://dx.doi.org/10.1007/978-94-009-5618-6_2

8 Goss, B. G. S., Nakatani, H., George, G. A., & Terano, M. (2003). Catalyst residue effects on the heterogeneous oxidation of polypropylene. Polymer Degradation & Stability82(1), 119-126. http://dx.doi.org/10.1016/S0141-3910(03)00172-1

9 Gorghiu, L. M., Jipa, S., Zaharescu, T., Setnescu, R., & Mihalcea, I. (2004). The effect of metals on thermal degradation of polyethylenes. Polymer Degradation & Stability84(1), 7-11. http://dx.doi.org/10.1016/S0141-3910(03)00265-9

10 Chirinos-Padrón, A. J., Hernández, P. H., & Sufirez, F. A. (1988). Influence of metal ions on antioxidant behaviour in polypropylene. Polymer Degradation & Stability20(3-4), 237-255. http://dx.doi.org/10.1016/0141-3910(88)90071-7

11 Lehner, M., Schlemmer, D., & Sängerlaub, S. (2015). Recycling of blends made of polypropylene and an iron-based oxygen scavenger - Influence of multiple extrusions on the polymer stability and the oxygen absorption capacity. Polymer Degradation & Stability122(12), 122-132. http://dx.doi.org/10.1016/j.polymdegradstab.2015.10.020

12 Dragunski, D. C., Freitas, A. R., Rubira, A. F., & Muniz, E. C. (2000). Influence of iron(III) chloride on the degradation of polyisoprene and polybutadiene. Polymer Degradation & Stability67(2), 239-247. http://dx.doi.org/10.1016/S0141-3910(99)00119-6

13 Haber, F., & Weiss, J. (1932). Über die Katalyse des Hydroperoxydes. Naturwissenschaft20(51), 948-950. http://dx.doi.org/10.1007/BF01504715

14 Gadioli, R., Morais, J. A., Waldman, W. R., & De Paoli, M. A. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: mechanical properties and its activity as antioxidant. Polymer Degradation & Stability108(10), 23-34. http://dx.doi.org/10.1016/j.polymdegradstab.2014.06.005

15 Guilhen, A., Gadioli, R., Fernandes, F. C., Waldman, W. R., & Aurelio De Paoli, M. (2017). High density polyethylene biocomposites reinforced with cellulose fibers and using lignin as antioxidant. Journal of Applied Polymer Science134(35), 45219. http://dx.doi.org/10.1002/app.45219

16 Fernandes, F. C., Gadioli, R., Yassitepe, E., & De Paoli, M.-A. (2017). Polyamide-6 composites reinforced with bleached or semi-bleached cellulose fibers and fabricated by extrusion. Polymer Composites38(2), 299-308. http://dx.doi.org/10.1002/pc.23587

17 Romão, W., Franco, M. F., Iglesias, A. H., Sanvido, G. B., Maretto, D. A., Gozzo, F. C., Poppi, R. J., Eberlin, M. N., & De Paoli, M. A. (2010). Fingerprinting of bottle-grade poly(ethylene terephthalate) via matrix-assisted laser desorption/ionization mass spectrometry. Polymer Degradation & Stability95(4), 666-671. http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.046

18 Spinacé, M. A. S., Lucato, M. U., Ferrão, M. F., Davanzo, C. U., & De Paoli, M. A. (2006). Determination of intrinsic viscosity of poly(ethylene terephthalate) using infrared spectroscopy and multivariate calibration method. Talanta69(3), 643-649. http://dx.doi.org/10.1016/j.talanta.2005.10.035. PMid:18970616. 

19 Romão, W., Franco, M. F., Bueno, M. I. M. S., Eberlin, M. N., & De Paoli, M. A. (2010). Analysing metals in bottle-grade poly(ethylene terephthalate) by X-ray fluorescence spectrometry. Journal of Applied Polymer Science117(5), 2993-3000. http://dx.doi.org/10.1002/app.32232

20 Macosko, C. W. (1994). Rheology principles, measurements, and applications. New York: VCH Publishers. 

21 Cruz, S. A., Farah, M., Zanin, M., & Bretas, R. E. S. (2008). Evaluation of rheological properties of virgin HDPE/recycled HDPE blends. Polímeros: Ciência e Tecnologia18(2), 144-151. http://dx.doi.org/10.1590/S0104-14282008000200012.

22 Ferg, E. E., & Rust, N. (2007). The effect of Pb and other elements found in recycled polypropylene on the manufacturing of lead-acid battery cases. Polymer Testing26(8), 1001-1014. http://dx.doi.org/10.1016/j.polymertesting.2007.07.001

23 Pawlak, A., Pluta, M., Morawiec, J., Galeski, A., & Pracella, M. (2000). Characterization of scrap poly(ethylene terephthalate). European Polymer Journal36(9), 1875-1884. http://dx.doi.org/10.1016/S0014-3057(99)00261-X.

24 Nakatani, H., Shibata, H., Miyazaki, K., Yonezawa, T., Takeda, H., Azuma, Y., & Watanabe, S. (2010). Studies on heterogeneous degradation of polypropylene/talc composite: effect of iron impurity on the degradation behavior. Journal of Applied Polymer Science115(1), 167-173. http://dx.doi.org/10.1002/app.31010.

5db0a88b0e8825ed7c61d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections