Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.09820
Polímeros: Ciência e Tecnologia
Original Article

The effects of residual organic solvent on epoxy: modeling of kinetic parameters by DSC and Borchardt-Daniels method

Victor de Carvalho Rodrigues; Denise Hirayama; Antonio Carlos Ancelotti Junior

Downloads: 0
Views: 119

Abstract

The curing reactions of epoxy resins are a complex process that defines thermosets final properties and are affected by any additive present on its formulation. Considering this, the aim of this study was to analyze the influence of the solvent addition on the curing kinetics of an epoxy system. The epoxy samples were prepared using different percentages by weight of acetone: 0, 2, 5 and 10 wt.%. From DSC and DMA tests, followed by the Borchardt-Daniels kinetic analysis it was reported that the addition of acetone can decrease the reactions rate, activation energy, Tg and elastic modulus. The presence of solvent, even in small amounts, can affect the curing mechanisms of epoxy resins. The changes on the curing behavior and the low quality of the final properties for the sample with 10 wt.% of solvent indicates that this may be a limit for acetone addition on the epoxy formulations.

 

Keywords

Acetone, Borchardt-Daniels, curing kinetics, epoxy

References

1 May, C. A. (1988). Epoxy resins: chemistry and technology (2nd edition). Additives for Polymers, 18(5), 19-20. https://doi.org/10.1016/0306-3747(88)90050-4

2 Mohan, P. (2013). A critical review: the modification, properties, and applications of epoxy resins. Polymer-Plastics Technology and Engineering, 52(2), 107-125. http://dx.doi.org/10.1080/03602559.2012.727057.

3 Jin, F. L., Li, X., & Park, S. J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. http://dx.doi.org/10.1016/j.jiec.2015.03.026.

4 Cascaval, C. N., Rosu, D., Mititelu-Mija, A., & Rosu, L. (2006). Kinetics of the curing reaction of selected epoxy resin-amine systems. Polymers, 51(3), 199-205. http://dx.doi.org/10.14314/polimery.2006.199.

5 Chen, X. M., & Ellis, B. (1993). Coatings and other applications of epoxy resins. In B. Ellis (Ed.), Chemistry and technology of epoxy resins (1st ed., pp. 303-0325). Sheffield: Springer Netherlands. http://dx.doi.org/10.1007/978-94-011-2932-9_9

6 Lau, K. T., Lu, M., Lam, C. K., Cheung, H. Y., Sheng, F. L., & Li, H. L. (2005). Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: The role of solvent for nanotube dispersion. Composites Science and Technology, 65(5 Spe Issue), 719-725. https://doi.org/10.1016/j.compscitech.2004.10.005

7 Okajima, I., Watanabe, K., Haramiishi, S., Nakamura, M., Shimamura, Y., & Sako, T. (2017). Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids. The Journal of Supercritical Fluids, 119, 44-51. http://dx.doi.org/10.1016/j.supflu.2016.08.015.

8 La Rosa, A. D., Banatao, D. R., Pastine, S. J., Latteri, A., & Cicala, G. (2016). Recycling treatment of carbon fibre/epoxy composites: materials recovery and characterization and environmental impacts through life cycle assessment. Composites. Part B, Engineering, 104, 17-25. http://dx.doi.org/10.1016/j.compositesb.2016.08.015.

9 Hirayama, D., Saron, C., Botelho, E. C., Costa, M. L., & Junior, A. C. A. (2017). Polypropylene composites manufactured from recycled carbon fibers from aeronautic materials waste. Materials Research, 20(Suppl. 2), 526-531. http://dx.doi.org/10.1590/1980-5373-mr-2016-1022.

10 Yi, C., Rostron, P., Vahdati, N., Gunister, E., & Alfantazi, A. (2018). Curing kinetics and mechanical properties of epoxy based coatings: the influence of added solvent. Progress in Organic Coatings, 124(May), 165-174. http://dx.doi.org/10.1016/j.porgcoat.2018.08.009.

11 Loos, M. R., Coelho, L. A. F., Pezzin, S. H., & Amico, S. C. (2008). The effect of acetone addition on the properties of epoxy. Polímeros, 18(1), 76-80. http://dx.doi.org/10.1590/S0104-14282008000100015.

12 Costa, M. L., Botelho, E. C., & Rezende, M. C. (2006). Monitoring of cure kinetic prepreg and cure cycle modeling. Journal of Materials Science, 41(13), 4349-4356. http://dx.doi.org/10.1007/s10853-006-6082-1.

13 Alonso, M. V., Oliet, M., Pérez, J. M., Rodríguez, F., & Echeverría, J. (2004). Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochimica Acta, 419(1–2), 161-167. http://dx.doi.org/10.1016/j.tca.2004.02.004.

14 Hardis, R., Jessop, J. L. P., Peters, F. E., & Kessler, M. R. (2013). Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Composites. Part A, Applied Science and Manufacturing, 49, 100-108. http://dx.doi.org/10.1016/j.compositesa.2013.01.021.

15 Cole, K. C. (1991). A New Approach to Modeling the Cure Kinetics of Epoxy Amine Thermosetting Resins. 1. Mathematical Development. Macromolecules, 24(11), 3093-3097. http://dx.doi.org/10.1021/ma00011a011.

16 Cole, K. C., Hechler, J. J., & Noël, D. (1991). A new approach to modeling the cure kinetics of epoxy Amine Thermosetting Resins. 2. Application to a Typical System Based on Bis[4-(diglycidylamino)phenyl]methane and Bis(4-aminophenyl) Sulfone. Macromolecules, 24(11), 3098-3110. http://dx.doi.org/10.1021/ma00011a012.

17 Javdanitehran, M., Berg, D. C., Duemichen, E., & Ziegmann, G. (2016). An iterative approach for isothermal curing kinetics modelling of an epoxy resin system. Thermochimica Acta, 623, 72-79. http://dx.doi.org/10.1016/j.tca.2015.11.014.

18 Bilyeu, B., Brostow, W., & Menard, K. (2001). Epoxy thermosets and their applications. III. Kinetic equations and models. The Journal of Materials Education, 23(4–6), 189-204.

19 Kasza, K., Matysiak, L., & Malinowski, L. (2009). Method to describe curing in large epoxy samples. Advances in Polymer Technology, 28(2010), 267-275. https://doi.org/10.1002/adv.20162.

20 Borchardt, H. J., & Daniels, F. (1957). The application of differential thermal analysis to the study of reaction kinetics. Journal of the American Chemical Society, 79(1), 41-46. http://dx.doi.org/10.1021/ja01558a009.

21 Bogoeva-Gaceva, G., & Bužarovska, A. (2013). A rapid method for the evaluation of cure kinetics of thermosetting polymers. Macedonian Journal of Chemistry and Chemical Engineering, 32(2), 337-344. http://dx.doi.org/10.20450/mjcce.2013.303.

22 Costa, M. L., Rezende, M. C., & Pardini, L. C. (1999). Métodos de estudo da cinética de cura de resinas epóxi. Polímeros: Ciência e Tecnologia, 9(2), 37-44. http://dx.doi.org/10.1590/S0104-14281999000200011.

23 Costa, M. L., Botelho, E. C., De Paiva, J. M. F., & Rezende, M. C. (2005). Characterization of cure of carbon/epoxy prepreg used in aerospace field. Materials Research, 8(3), 317-322. http://dx.doi.org/10.1590/S1516-14392005000300016.

24 Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658-2667. http://dx.doi.org/10.1002/app.31787.

25 Rivers, G., Rogalsky, A., Lee-Sullivan, P., & Zhao, B. (2015). Thermal analysis of epoxy-based nanocomposites: have solvent effects been overlooked? Journal of Thermal Analysis and Calorimetry, 119(2), 797-805. http://dx.doi.org/10.1007/s10973-013-3613-2.

26 Jeyranpour, F., Alahyarizadeh, G., & Minuchehr, A. (2016). The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation - A comparative study. Polymer, 88, 9-18. http://dx.doi.org/10.1016/j.polymer.2016.02.018.

27 Eliaz, N., Ron, E. Z., Gozin, M., Younger, S., Biran, D., & Tal, N. (2018). Microbial degradation of epoxy. Materials (Basel), 11(11), 1-15. http://dx.doi.org/10.3390/ma11112123. PMid:30380643.

28 Huntsman. (2012). Technical Data Sheet - Araldite ® LY 5052 / Aradur ® 5052. Retrieved 2020, June 12, from https://samaro.fr/pdf/FT/Araldite_FT_LY_5052_Aradur_5052_EN.pdf

29 Hong, S. G., & Wu, C. S. (2000). DSC and FTIR analyses of the curing behavior of epoxy/dicy/solvent systems on hermetic specimens. Journal of Thermal Analysis and Calorimetry, 59(3), 711-719. http://dx.doi.org/10.1023/A:1010189301221.

30 Hong, S. G., & Wu, C. S. (1998). DSC and FTIR analysis of the curing behaviors of epoxy/DICY/solvent open systems. Thermochimica Acta, 316(2), 167-175. http://dx.doi.org/10.1016/S0040-6031(98)00356-6.

31 American Society for Testing and Materials – ASTM (2015). 2041 Estimating Kinetic Parameters by Differential Scanning Calorimeter Using the Borchardt and Daniels Method 1. West Conshohocken, PA: ASTM. https://doi.org/10.1520/E2041-13E01.2

32 Ma, X., Zhang, F., Han, K., Yang, B., & Song, G. (2015). Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel, 160, 43-49. http://dx.doi.org/10.1016/j.fuel.2015.07.079.

33 Cervi, G., Pezzin, S. H., & Meier, M. M. (2017). Differential scanning calorimetry study on curing kinetics of diglycidyl ether of bisphenol A with amine curing agents for self-healing systems. Revista Materia, 22(2), 3-8. http://dx.doi.org/10.1590/s1517-707620170002.0183.

34 Raponi, O. A., Raponi, R. A., Barban, G. B., Benedetto, R. M. D., & Ancelotti Junior, A. C. (2017). Development of a simple dielectric analysis module for online cure monitoring of a commercial epoxy resin formulation. Materials Research, 20(Suppl. 2), 291-297. http://dx.doi.org/10.1590/1980-5373-mr-2017-0067.

35 Costa, M. L., Rezende, M. C., de Paiva, J. M. F., & Botelho, E. C. (2006). Structural carbon/epoxy prepregs properties comparison by thermal and rheological analyses. Polymer-Plastics Technology and Engineering, 45(10), 1143-1153. http://dx.doi.org/10.1080/03602550600887251.

36 de Andrade Raponi, O., Righetti de Souza, B., Miranda Barbosa, L. C., & Ancelotti, A. C. Jr. (2018). Thermal, rheological, and dielectric analyses of the polymerization reaction of a liquid thermoplastic resin for infusion manufacturing of composite materials. Polymer Testing, 71(July), 32-37. http://dx.doi.org/10.1016/j.polymertesting.2018.08.024.

37 Carbas, R. J. C., Marques, E. A. S., Da Silva, L. F. M., & Lopes, A. M. (2014). Effect of cure temperature on the glass transition temperature and mechanical properties of epoxy adhesives. The Journal of Adhesion, 90(1), 104-119. http://dx.doi.org/10.1080/00218464.2013.779559.

38 Le Craz, S., & Pethrick, R. A. (2011). Solvent effects on cure 1-benzyl alcohol on epoxy cure. International Journal of Polymeric Materials and Polymeric Biomaterials, 60(7), 441-455. http://dx.doi.org/10.1080/00914037.2010.531813.

39 Montserrat, S., & Cima, I. (1999). Isothermal curing of an epoxy resin by alternating differential scanning calorimetry. Thermochimica Acta, 330(1–2), 189-200. http://dx.doi.org/10.1016/S0040-6031(99)00033-7.
 

60a7a777a95395591659ee65 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections